|本期目录/Table of Contents|

[1]高驰,赵灵,王庆鹤,等.基于自然生长期和越冬期叶片解剖结构特征的7种重楼属植物抗寒力[J].应用与环境生物学报,2022,28(01):111-121.[doi:10.19675/j.cnki.1006-687x.2020.09041]
 GAO Chi,ZHAO Ling,WANG Qinghe,et al.Analysis of cold resistance of seven Paris species based on leaf anatomical structure during the natural growth and the overwintering periods[J].Chinese Journal of Applied & Environmental Biology,2022,28(01):111-121.[doi:10.19675/j.cnki.1006-687x.2020.09041]
点击复制

基于自然生长期和越冬期叶片解剖结构特征的7种重楼属植物抗寒力()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
28卷
期数:
2022年01期
页码:
111-121
栏目:
研究论文
出版日期:
2022-02-25

文章信息/Info

Title:
Analysis of cold resistance of seven Paris species based on leaf anatomical structure during the natural growth and the overwintering periods
作者:
高驰赵灵王庆鹤任梓萱赵家雯尹鸿翔
1成都中医药大学药学院 成都 611137 2成都中医药大学民族医药学院 成都 611137
Author(s):
GAO Chi1 ZHAO Ling1 WANG Qinghe1 REN Zixuan2 ZHAO Jiawen & YIN Hongxiang1?
1 School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China 2 College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
关键词:
重楼属叶片解剖结构叶片超微结构抗寒性综合评价
Keywords:
genus Paris leaf anatomic structure leaf ultrastructure cold?resistance comprehensive assessment
DOI:
10.19675/j.cnki.1006-687x.2020.09041
摘要:
为探索重楼属不同抗寒力的7种植物的叶片解剖结构特征与其抗寒性的相关性,探究重楼属植物的抗寒机制,以自然生长期(6月)和越冬期(1月)的7种重楼叶片为材料,制作石蜡切片和透射电镜切片,分别观测10项叶肉解剖结构和栅栏细胞超微结构. 采用聚类分析法筛选两个时期的抗寒性评价指标,结合隶属函数法对不同重楼抗寒性进行综合评价. 结果表明:重楼叶片上下表皮为长方形单层细胞,栅栏细胞1-2层,7种重楼的10项叶片结构指标差异性显著(P < 0.05). 聚类分析筛选出两个时期的重楼属植物抗寒性评价指标大致相同. 其中自然生长期筛选出的指标为叶片总厚度(TL)、细胞结构疏松度(SR)、叶脉突起度(VPD)、栅海比(P/S)和下表皮厚度(TLE);越冬期的抗寒性指标为海绵组织厚度(TS)、栅栏组织厚度(TP)、VPD、P/S和TLE. 隶属函数值计算出两个时期的排序结果显示,除长柱重楼排序差别较大外,其余种大致相同. 对比两个时期栅栏细胞超微结构表明,低温会导致细胞壁破损,细胞核皱缩,叶绿体中类囊体降解,基粒片层空隙增大,嗜锇颗粒增加,淀粉粒合成受阻,线粒体数量增加. 7种重楼的抗寒性强弱排序为越南重楼>皱叶重楼>长柱重楼>宽瓣球药隔重楼>西畴重楼>平伐重楼>云南重楼. 抗寒性强的重楼属植物的叶片特征表现为叶片下表皮和栅栏组织更厚,海绵组织更薄,具有更大的细胞组织紧密度以及更大的叶脉厚度和叶脉突起度,细胞核和叶绿体结构更稳定,低温环境下受损程度更小. (图5 表9 参32)
Abstract:
The purpose of this study was to explore the correlation between the leaf?anatomical?structure characteristics of seven Paris species and the degree of their cold resistance, and to explore the cold resistance mechanism of the Paris genus. Paraffin sections and transmission electron microscopy sections were prepared from the leaves of seven Paris species during the natural growth period (June) and overwintering period (January) to observe the anatomical structures of the mesophyll and the ultrastructures of palisade cells, respectively. The cluster analysis method was used to screen the evaluation indices of cold resistance in the two periods, combined with the membership function method to comprehensively evaluate the cold resistance of the different species of Paris. The results showed that the upper and lower epidermis of the leaves of the seven Paris species were rectangular monolayer cells, and the palisade cells were mono- or bilayered. The microstructure of the leaves of the different Paris species was significantly different (P < 0.05). The evaluation indices of cold resistance of the Paris genus in the two periods were determined to be similar through cluster analysis. Among them, the indices used for evaluation of cold resistance in the natural growth period were leaf thickness (TL), spongy ratio (SR), vein protuberance degree (VPD), palisade tissue/spongy tissue (P/S), and thickness of lower epidermis (TLE). The indices used for evaluation of cold resistance in the overwintering period included sponge tissue thickness (TS), palisade tissue thickness (TP), VPD, P/S and TLE. Ranking of the results of the two periods calculated by the membership function values shows that except for the large difference in the ranking of P. forrestii, the observed parameters in other species were roughly similar. The comparison of the ultrastructure of palisade cells between the two periods showed that exposure to low temperatures causes cell wall damage, nuclear shrinkage, thylakoid degradation in chloroplasts, enlarged space of grana lamella, increased osmiophilic granules, blocked starch grain synthesis, and increased mitochondrial numbers. The cold resistance of the seven Paris species was ranked from strong to weak as follows: P. vietnamensis > P. rugosa > P. forrestii > P. fargesii var. latipetalata > P. cronquistii var. Xichouensis > P. vaniotii > P. polyphylla?var. yunnanensis. The leaf characteristics of Paris species that exhibit strong cold resistance were as follows: the upper and lower epidermis and palisade tissues are thicker, the sponge tissues are thinner, the leaf tissues are more compact, the leaf veins are thicker and more prominent, the nucleus and chloroplast structures are more stable, and the degree of damage is less in a low-temperature environments.

参考文献/References:

1 巨博雅, 朱厚达, 李燕敏, 王瑞, 陈两绵, 高慧敏, 王智民. 重楼药材和混伪品中5种皂苷的含量及对《中国药典》2015年版重楼含量测定修订的探讨[J]. 中国中药杂志, 2020, 45 (8): 1745-1755 [Ju BY, Zhu HD, Li YM, Wang R, Chen LM, Gao HM, Wang ZM. Determination of five steroidal saponins in Paridis Rhizoma and its adulterants as well as consideration on its quantitative methoddescribed in Chinese Pharmacopoeia (2015 edition) [J]. Chin J Chin Mater Med, 2020, 45 (8): 1745-1755]
2 孟巍, 杜娟, 陈涛. 重楼的化学成分及其抗肿瘤机制[J]. 生命的化学, 2020, 40 (1): 70-74 [Meng W, Du J, Chen T. The chemical constituents and abtineoplastic effects of Paridis rhizome [J]. Chem Life, 2020, 40 (1): 70-74]
3 刘立敏, 赵志莲, 韩多, 李海峰. 不同生长年限滇重楼干物质积累量及活性成分的积累规律考察[J]. 中国医药工业杂志, 2016, 47 (6): 706-710 [Liu LM, Zhao ZL, Han D, Li HF. Investigation on accumulation of dry weight and active ingredients of Paris polyphylla var. yunnanensis with different growth years [J]. Chin J Pharm, 2016, 47 (6): 706-710]
4 刘涛, 王玲, 李玛, 杨生超. 不同温度对滇重楼光合作用及有效成分含量的影响[J]. 中国现代中药, 2015, 17 (10): 1041-1043 [Liu T, Wang L, Li M, Yang SC. Effects of different temperature on photosynthesis and effective components of Paris polyphylla var. yunnanensis [J]. Mod Chin Med, 2015, 17 (10): 1041-1043]
5 Gao X, Zhang X, Chen W, Li J, Yang W, Zhang X, Li S, Liu C. Transcriptome analysis of Paris polyphylla var. yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves [J]. Phytochemistry, 2020, 178: 112460?
6 尹显梅, 张开元, 蒋桂华, 饶文霞, 刘娟汝, 尹鸿翔. 华重楼皂苷类成分的动态分布规律对药材质量的影响[J]. 中草药, 2017, 48 (6): 1199-1204 [Yin XM, Zhang KY, Jiang GH, Rao WX, Liu JR, Yin HX. Effect of dynamic distribution of steroid saponins from Paris polyphylla var. chinensis on medical material quality [J]. Chin Tradit Herbal Drugs, 2017, 48 (6): 1199-1204]
7 Lincoln Taiz, Eduardo Zeiger; 宋纯鹏, 王学路译. 植物生理学 [M]. 5版. 北京: 科学出版社, 2015, 4: 602-604 [Taiz L, Zeiger E. Translated by Song CP, Wang XL. Phytophysiology [M]. 5th ed. Beijing: Science?Press, 2015, 4: 602-604]
8 丹曲, 张艳福, 方江平, 郭其强, 李慧娥. 西藏林芝不同居群桃儿七表型多样性分析[J]. 南方农业学报, 2017, 48 (3): 386-392 [Dan Q, Zhang YF, Fang JP, Guo QQ, Li HE. Phenotypic diversity of Sinopodophyllum hexandrum from different populations in Nyingchi, Tibet [J]. J South Agric, 2017, 48 (3): 386-392]
9 何海旺, 赵明, 武鹏, 龙芳, 邹瑜. 基于香蕉叶片解剖结构的抗寒性评价[J]. 西南农业学报, 2017, 30 (1): 193-198 [He HW, Zhao M, Wu P, Long F, Zou Y. Cold resistance evaluation based on leaf anatomy structure of banana [J]. Southwest Chin J Agric Sci, 2017, 30 (1): 193-198]
10 滕尧, 李安定, 郝自远, 张洪亮, 张丽敏, 蔡国俊. 西番莲解剖结构特征及低温胁迫下叶片结构与抗寒性的关系[J]. 浙江农业学报, 2018, 30 (11): 1849-1858 [Teng Y, Li AD, Hao ZY, Zhang HL, Zhang LM, Cai GJ. Anatomical structure of Passiflora caerulea L. and relationship between leaf structure and cold resistance under low temperature stress [J]. Acta Agric Zhejiangensis, 2018, 30 (11): 1849-1858]
11 明萌, 何静雯, 卢丹, 谢晓鸿, 吴月燕. 低温胁迫对“繁景”杜鹃生理特性及叶片超微结构的影 [J]. 广西植物, 2017, 37 (8): 969-978. [Ming M, He JW, Lu D, Xie XH, Wu YY. Effects of low temperature stress on physiological characteristics and ultrastructure of ‘Fanjing’ Rhododendron leaves [J]. Guihaia, 2017, 37 (8): 969-978]
12 寒玉, 雷天翔, 李唯, 何百鋆. 低温胁迫下“贝达”和“赤霞珠”葡萄不同组织糖含量及细胞结构的变化[J]. 果树学报, 2015, 32 (4): 604-611 [Han Y, Lei TX, Li W, He BJ. Changes of sugar contents in different tissues and cell structure in two grape (Vitis vinifera L. ) varieties under low temperature stress [J]. J Fruit Sci, 2015, 32 (4): 604-611]
13 李瑞雪, 金晓玲, 胡希军, 柴弋霞, 蔡梦颖, 罗峰, 张方静. 6种含笑属植物抗寒性分析与综合评价[J]. 应用生态学报, 2017, 28 (5): 1464-1472 [Li RX, Jin XL, Hu XJ, Chai YX, Cai MY, Luo F, Zhang FJ. Analysis and comprehensive evaluation on cold resistance of six varieties of Michelia [J]. Chin J Appl Ecol, 2017, 28 (5): 1464-1472]
14 马婷, 李静, 肖良俊, 宁德鲁. 十三个核桃品种幼苗叶片解剖结构与抗寒性的关系[J]. 北方园艺, 2016, 5 (3): 21-24 [Ma T, Li J, Xiao LJ, Ning DL. Study on the relationship between cold hardiness and leaf anatomy of thirteen Walnut cultivars in seedling [J]. North Hortic, 2016, 5 (3): 21-24]
15 谭殷殷, 金晓玲, 余秋岫, 孙凌霄. 5种含笑属植物叶片抗寒结构指标的筛选与抗寒性评价[J]. 广西植物, 2020, 10 (8): 969-978 [Tan YY, Jin XL, Yu QX, Sun XL. Screening of leaf cold-resistant structural indexes and cold resistance evaluation of 5 Michelia species [J]. Guihaia, 2020, 10 (8): 969-978]
16 曾建亮, 邓全恩, 李建安, 程军勇, 邓先珍, 姜德志. 6个油茶品种叶片解剖结构与耐寒性的关系[J]. 经济林研究, 2020, 38 (1): 117-124 [Zeng JL, Deng QE, Li JA , Cheng JY, Deng XZ, Jiang DZ. Relationship between leaf anatomic structure and cold tolerance in six Camellia oleifera cultivars [J]. Nonwood For Res, 2020, 38 (1): 117-124]
17 李恒. 重楼属植物[M]. 北京: 科学出版社, 1998: 153 [Li H. The Genus Paris (Trilliaceae) [M]. Beijing: Science Press, 1998: 53]
18 饶文霞, 张开元, 尹显梅, 薛丹, 张浩, 尹鸿翔. 西畴重楼生物学特征补述及其系统位置[J]. 广西植物, 2018, 38 (5): 602-607 [Rao WX, Zhang KY, Yin XM, Xue D, Zhang H, Yin HX. Biological characteristics supplement and systematic position of Paris cronquistii var. Xichouensis [J]. Guihaia, 2018, 38 (5): 602-607]
19 阳妮, 蒋景龙, 李丽, 侯茹平, 丁德宽, 邓家锐. 3个柑橘品种幼苗对低温胁迫的生理响应及其抗寒性评价[J]. 中国果树, 2020, 6 (5): 32-39+143 [Yang N, Jiang JL, Li L, Hou RP, Ding DK, Deng JR. Physiological response and evaluation of cold resistance of three citrus varieties seedlings under low temperature stress [J]. Chin Fruits, 2020, 6 (5): 32-39+143]
20 张志伟. 基于主成分分析法的5种棕榈科苗木抗寒性评价[J]. 种子, 2019, 38 (12): 72-76 [Zhang ZW. Evaluation of cold resistance of palm seedlings from five species based on principal component analysis (PCA) [J]. Seed, 2019, 38 (12): 72-76]
21 郭学民, 刘建珍, 翟江涛, 肖啸, 吕亚媚, 李丹丹, 裴士美, 张立彬. 16个品种桃叶片解剖结构与树干抗寒性的关系[J]. 林业科学, 2015, 51 (8): 33-43 [Guo XM, Liu JZ, Zhai JT, Xiao X, Lü YM, Li DD, Pei SM, Zhang LB. Relationship between leaf anatomical structure and trunk cold resistance of 16 peach cultivars [J]. Sci Silv Sin, 2015, 51 (8): 33-43]
22 陈雪峰, 景晨娟, 赵习平, 武晓红. 植物叶片组织结构在抗逆研究中的应用进展[J]. 河北农业科学, 2018, 22 (3): 50-53 [Chen XF, Jing CJ, Zhao XP, Wu XH. Advances in application of plant leaf tissue structure in the research of stress tolerance [J]. J Hebei Agric Sci, 2018, 22 (3): 50-53]
23 刘世彪, 陈菁, 胡正海. 7种番荔枝果树的叶片结构及其与抗寒性关系研究[J]. 果树学报, 2004, 21 (3): 241-246 [Liu SB, Chen J, Hu ZH. Studies on the relationship between leaf structure and cold resistance of 7 species of annonaceae fruit trees [J]. J Fruit Sci, 2004, 21 (3): 241-246]
24 孟诗原, 吕桂云, 张明忠, 张志浩, 韦业, 王华田, 刘秀梅. 5种卫矛属植物对低温胁迫的生理响应及抗寒性评价[J]. 西北植物学报, 2020, 40 (4): 624-634 [Meng SY, Lv GY, Zhang MZ, Zhang ZH, Wei Y, Wang HT, Liu XM. Physiological response to cold stress and evaluation of cold resistance for five species of Euonymus Linn [J]. Acta Bot Bor-Occid Sin, 2020, 40 (4): 624-634]
25 Hajihashemi S, Noedoost F, Geuns JMC, Djalovic I, Siddique KHM. Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of?Stevia rebaudiana [J]. Front Plant Sci, 2018, 10 (9): 1430?
26 郝辉芳, 范月仙, 李生泉. 低温锻炼对冷胁迫下棉苗叶片细胞超微结构的影响[J]. 棉花学报, 2017, 29 (3): 268-273 [Hao HF, Fan YX, Li SQ. Effects of cold acclimation on chilling tolerance and leaf ultrastructure in cotton seedlings [J]. Cott Sci, 2017, 29 (3): 268-273]
27 尤扬, 宋帆, 宋凯, 曹红霞, 李小果, 李高远, 齐玉杰. 冬季降温对潢川金桂叶肉细胞超微结构的影响[J]. 北华大学学报(自然科学版), 2020, 21 (1): 93-98 [You Y, Song F, Song K, Cao HX, Li XG, Li GY, Qi YJ. Effects of winter cooling on ultrastructure of mesophyll cells on osmanthus fragrans ‘Huangchuan Jingui’ [J]. J Beihua Univ (Nat Sci), 2020, 21 (1): 93-98]
28 王宁, 董莹莹, 苏金乐. 低温胁迫下2种樟树叶片超微结构的比较[J]. 西北农林科技大学学报(自然科学版), 2013, 41 (7): 106-112 [Wang N, Dong YY, Su JL. Comparison of leaf blade ultra-structures of two camphor varieties under cold stress [J]. J Northwest A&F Univ (Nat Sci), 2013, 41 (7): 106-112]
29 尤扬, 王贤荣, 张晓云. 低温对桂花“状元红”叶肉细胞超微结构的影响[J]. 中国细胞生物学学报, 2018, 40 (5): 752-758 [You Y, Wang XR, Zhang XY. Effects of low temperature on mesophyll cell ultrastructure of osmanthus fragrans ‘Zhangyuan Hong’ [J]. Chin J Cell Biol, 2018, 40 (5): 752-758]
30 Ritonga FN, Chen S. Physiological and molecular mechanism involved in cold stress tolerance in plants [J]. Plants (Basel). 2020, 9 (5): 560
31 何天久, 吴巧玉, 雷尊国, 李飞, 陈恩发, 夏锦慧. 植物冷驯化作用机制的研究进展[J]. 贵州农业科学, 2018, 46 (9): 11-14 [He TJ, Wu QY, Lei ZG, Li F, Chen EF, Xia JH. Research progress on plant cold acclimation mechanism [J]. Guizhou Agric Sci, 2018, 46 (9): 11-14]
32 Fürtauer L, Weiszmann J, Weckwerth W, N?gele T. Dynamics of plant metabolism during cold acclimation [J]. Int J Mol Sci, 2019, 20 (21): 5411

相似文献/References:

[1]李良博,张海涛,杨燕,等.UV-B辐射增强对紫茎泽兰和艾草生长形态 及竞争效应的影响*[J].应用与环境生物学报,2016,22(05):759.[doi:10.3724/SP.J.1145.2016.01026]
 LI Liangbo,ZHANG Haitao,YANG Yan,et al.Influence of enhanced UV-B radiation on growth morphology and competitive effects of Eupatorium adenophorum L. and Artemisia argyi Levl*[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):759.[doi:10.3724/SP.J.1145.2016.01026]
[2]陈旭,刘洪凯,王强,等.鲁东丘陵同质生境中11个树种叶解剖学特性比较[J].应用与环境生物学报,2019,25(03):655.[doi:10.19675/j.cnki.1006-687x.201808008]
 CHEN Xu,LIU Hongkai,WANG Qiang,et al.Leaf anatomical characteristics of 11 tree species in the homogeneous habitats of eastern Shandong province hills[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):655.[doi:10.19675/j.cnki.1006-687x.201808008]

更新日期/Last Update: 2022-02-25