|本期目录/Table of Contents|

[1]郭玲,刘方庆,时磊,等.血雉喜食苔藓的生理生态及环境适应性[J].应用与环境生物学报,2020,26(06):1400-1405.[doi:DOI: 10.19675/j.cnki.1006-687x.2019.10020]
 GUO Ling,LIU Fangqing,et al.Physiological and ecological adaptability of blood pheasant (Ithaginis cruentus) and its favorite bryophyte[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1400-1405.[doi:DOI: 10.19675/j.cnki.1006-687x.2019.10020]
点击复制

血雉喜食苔藓的生理生态及环境适应性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年06期
页码:
1400-1405
栏目:
研究论文
出版日期:
2020-12-25

文章信息/Info

Title:
Physiological and ecological adaptability of blood pheasant (Ithaginis cruentus) and its favorite bryophyte
作者:
郭玲刘方庆时磊文陇英
1新疆农业大学动物科学学院 乌鲁木齐 830001 2西南山地濒危鸟类保护四川省高等学校重点实验室,乐山师范学院生命科学学院 乐山 614000
Author(s):
GUO Ling1 2 LIU Fangqing2 SHI Lei1? WEN Longying2?
1 College of Animal Science, Xinjiang Agricultural University, Urumqi 830001, China 2 Key Laboratory of Sichuan Institute for Protecting Endangered Birds in the Southwest Mountains, College of Life Sciences, Leshan Normal University, Leshan 614004, China
关键词:
苔藓血雉花生四烯酸抗寒性生物酶
Keywords:
bryophyte blood pheasant (Ithaginis cruentus) arachidonic acid freezing resistance enzyme
DOI:
DOI: 10.19675/j.cnki.1006-687x.2019.10020
摘要:
血雉(Ithaginis cruentus)及其胚胎具有超强的抗寒能力. 为探究血雉取食苔藓与其抗寒性是否有关,采用基于OTU(可操作分类单位)的微生物生态学分析方法,从分子水平鉴别川西高原巴塘血雉粪便中苔藓植物的种类和相对含量,结果显示血雉最喜食的苔藓是羽藓属(Thuidium),偶尔取食三洋藓属(Sanionia). 结合生境,选择大羽藓(Thuidium cymbifolium)、三洋藓(Sanionia uncinata)(分别代表最喜食和偶尔取食的苔藓)为研究对象,以未被取食的纤枝短月藓(Brachymenium exile)和疣肋曲柄藓(Campylopus schwarzii)作为对照,然后采用气相色谱及酶联免疫分析方法测定苔藓、血雉肌肉及对照物种雉鸡(Phasianus colchicus)肌肉中各项抗寒性生理指标. 结果表明:血雉的花生四烯酸、Ca2+-ATPase、CaM和PAL均高于雉鸡,前列腺素E(PGE)和前列腺素F2a(PGF2a)低于雉鸡;大羽藓的花生四烯酸(P < 0.01)和Ca2+-ATPase(P < 0.01)最高,PGE(P < 0.01)和PGF2a(P < 0.01)最低;不取食苔藓的花生四烯酸(P < 0.01)含量最低,PGE(P < 0.01)和PGF2a(P < 0.01)最高. 综上所述,多项抗寒性生理指标在血雉与大羽藓中的含量变化一致,表明血雉抗寒性与其所食苔藓有关,食物中的花生四烯酸含量可能具有重要作用;结果对揭示血雉胚胎超强耐寒能力的机理和进一步研究其他动物耐寒机理有一定参考意义. (图2 表2 参44)
Abstract:
The blood pheasant (Ithaginis cruentus) and its embryos have a strong low-temperature resistance, with arachidonic acid in moss potentially improving the cold resistance of these animals. Thus, we investigated whether moss-feeding was related to cold resistance in this species. The microbial ecology analysis method based on operational taxonomy units was used to identify the moss species at the molecular level, and its content was measured in samples collected from Batang, Western Sichuan Plateau. The favorite moss species of the blood pheasant was Thuidium, and it occasionally ate Sanionia. Based on the identification of moss species in the habitat of the blood pheasant, T. cymbifolium and S. uncinata (representing the most favorite and occasionally eaten moss species, respectively) were selected for subsequent research, and inedible moss including Brachymenium exile and Campylopus schwarzii were selected as the control group. Gas chromatography and enzyme-linked immunoassay were used to determine the content of physiological cold resistance indexes in the moss and in the muscles of blood pheasant and pheasant (Phasianus colchicus). The results showed that the content of arachidonic acid, Ca2+-ATPase, CaM, and PAL was higher in the muscle of blood pheasant that pheasant. In addition, prostaglandin E (PGE) and prostaglandin F2a (PGF2a) were lower in the blood pheasant muscle than that in the pheasant. Among the three species of moss, the arachidonic acid and Ca2+-ATPase content (P < 0.01) in T. cymbifolium was the highest, and the PGE (P < 0.01) and PGF2a (P < 0.01) content were the lowest. The arachidonic acid content (P < 0.01) in the inedible moss was the lowest, and the PGE (P < 0.01) and PGF2a (P < 0.01) content were the highest. Therefore, the content of many cold-resistant physiological indicators in the blood pheasant muscle was consistent with that in T. cymbifolium, indicating that cold resistance in the blood pheasant might be related to the moss that it eats and that the arachidonic acid content might play an important role. Our results revealed the mechanism of the cold-resistant ability of blood pheasant embryos, with further study required regarding the cold-resistance mechanism of other animals.

参考文献/References:

1 Wang N, Tan BC, Davison GWH. Bryophytes as a major dietary component for the blood pheasant, Ithaginis cruentus [J]. J Bryol, 2011, 33: 257-260
2 Liu NF. Breeding of Beicki’s blood pheasant (Ithaginis cruentus beicki) in northwestern Gansu, China [J]. Game Wildlife Sci, 2000, 17 (1): 17-27
3 Jia CX, Sun YH, Swenson JE. Unusual incubation behavior and embryonic tolerance of hypothermia by the blood pheasant (Ithaginis cruentus) [J]. Auk, 2010: 926-931
4 文陇英, 包新康, 王留臣, 刘迺发. 血雉分类地位和遗传分化的探讨[J]. 动物分类学报, 2009, 34 (1): 180-183 [Wen LY, Bao XK, Wang LC, Liu NF. Study on the taxonomy and genetic divergence of Ithaginis cruentus [J]. Zool Syst, 2009, 34 (1): 180-183]
5 Zhan XJ, Zheng YF, Wei FW, Bruford MW, Jia C. Molecular evidence for pleistocene refugia at the eastern edge of the Tibetan Plateau [J]. Molec Ecol, 2011, 20 (14): 3014-3026
6 Metcalfe NB, Monaghan P. Compensation for a bad start: grow now, pay later [J]. Trends Ecol Evol, 2001, 16 (5): 254-260
7 Nie Y, Speakman JR, Wu Q, Zhang C, Hu Y, Xia M. Exceptionally low daily energy expenditure in the bamboo-eating giant panda [J]. Science, 2015, 349 (6244): 171-174
8 Zhao SC, Zheng P, Dong S, Zhan X, Wu Q, Guo X, Hu Y, He W, Zhang S, Fan W, Zhu L, Li D, Zhang X, Chen Q, Zhang H, Zhang Z, Jin X, Zhang J, Yang H, Wang J, Wei F. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation [J]. Nat Genet, 2013, 45 (1): 67-99
9 Jose CN, Lores M, Carlos AA, Velando A. Thrifty development: early-life diet restriction reduces oxidative damage during later growth [J]. Funct Ecol, 2011, 25 (5): 1144-1153
10 Lack D. The Natural Regulation of Animal Numbers [M]. Oxford: Clarendon Press, 1954
11 李春秋, 李德浩. 青海省祁连林区的血雉(Ithaginis cruentus)与蓝马鸡(Crossoptilon auritum) [J]. 动物学研究, 1981 (1): 80-85 [Li CQ, Li DH. Blue-eared phessant and blood pheasant in the forestry of Qilian Xian, Qinghai [J]. Zool Res, 1981 (1): 80-85]
12 罗旭, 吴太平, 黄安琪. 云南高黎贡山两种同域分布雉类冬季的食物分析及取食策略[J]. 生态学杂志, 2016, 35 (4): 1003-1008 [Luo X, Wu TP, Huang AQ. Diet analysis and foraging strategy of two sympatric pheasants at Mt. Gaoligong in winter [J]. Chin J Ecol 2016, 35 (4): 1003-1008]
13 姚建初. 陕西太白山的血雉[J]. 动物学杂志, 1989 (6): 32-36 [Yao JC. Blood pheasant (Ithaginis cruentus) in Taibai Mountain, Shaanxi Province [J]. Chin J Zool, 1989 (6): 32-36]
14 史东仇, 李贵辉. 四川南坪白河保护区血雉食性的初步研究[J]. 动物学研究, 1985 (2): 25-31 [Shi DQ, Li GH. A preliminary study on the Ithaginis cruentus feeding habits of the Baihe Nature Reserve in Nanping, Sichuan Province [J]. Zool Res, 1985 (2): 25-31]
15 杨岚, 潘汝亮. 横断山鸡形目鸟类的分布与食性[C]//青藏高原研究横断山考察专集. 北京: 中国科学技术出版社, 1986 [Yang N, Pan RL. Distribution and feeding habits of the Hengduan Mountain pheasant [C]//Research on the Hengduan Mountain in the Qinghai-Tibet Plateau. Beijing: China Science and Technology Press, 1986]
16 姚建初. 血雉摄食的藓类[J]. 四川动物, 1992 (3): 32 [Yao JC. The moss of blood pheasant (Ithaginis cruentus) feeding [J]. Sichuan J Zool, 1992 (3): 32]
17 朱瑞良. 苔藓植物分类学: 问题和挑战[C]. 中国植物学会第十六次全国会员代表大会暨85周年学术年会, 昆明, 2018: 334-335 [Zhu RL. Classification of bryophytes: problems and challenges [C]//The 16th national congress of the Chinese botanical society and the 85th anniversary annual conference, Kunming, 2018: 334-335]
18 王玲, 郑荣周, 何飞, 樊华, 尤海舟, 贾程, 隆廷伦, 刘兴良. 四川西部地区苔藓植物区系研究[J]. 四川林业科技, 2009, 30 (1): 18-23 [Wang L, Zheng RZ, He F, Fan F, You HZ, Jia C, Long TL, Liu XL. Research on the bryoflora in the West of Sichuan Province, China [J]. J Sichuan For Sci Technol, 2009, 30 (1): 18-23]
19 宋鸣芳. 太白山自然保护区苔藓植物研究[D]. 西安: 西北大学, 2007 [Song MF, Study on bryophytes in Taibai Mountain Nature Reserve [D]. Xi’an: Northwest University, 2007]
20 Prins H. Why are mosses eaten in cold environments only [J]. Oikos, 1981, 38: 374-380
21 陈珮珮. 几种藓类植物的挥发性化学成分分析[D]. 长沙: 湖南师范大学, 2011 [Chen PP. A preliminary chemical analysis on the volatile of several mosses [D]. Changsha: Hunan Normal University, 2011]
22 Cremel G, Rebel G, Canguilhem B, Rendonl A, Waksman A. Seasonal variation of the composition of membrane lipids in liver mitochondria of the hibernator cricetus relation to intramitochondrial intermembranal protein movement [J]. Comp Biochem Physiol A Physiol, 1979, 63 (1): 159-167
23 Aro EM, Karunen P. Effect of changed environmental conditions on glycolipids of the mosses pleurozium schreberi and ceratodon purpureus [J]. Physiol Plant, 1979, 45 (2): 201-206
24 Barnett LB. Seasonal changes in temperature acclimatization of the house sparrow, passer domesticus [J]. Comp Biochem Physiol, 1970, 33 (3): 559-578
25 Blem CR. Patterns of lipid storage and utilization in birds [J]. Integrat Comp Biol, 1976, 16 (4): 671-684
26 Ijas L, Nuuja I, Soimajarvi J, Valkeajvi P. Body lipid composition in the winter fed and control populations of the wild male black grouse (Lyrurus tetrix L) in autumn and spring [J]. Comp Biochem Physiol A Physiol, 1978, 60 (3): 313-317
27 Yom-Tov Y, Tietz A. The effect of diet, ambient temperature and day length on the fatty acid composition in the depot fat of the European starling (Sturnus vulgais) and the rock partridge (Alectoris chucar) [J]. Comp Biochem Physiol A Physiol, 1978, 60 (2): 161-164
28 Wagner WD, Peterson RA, Cenedella RJ. The effects of cold and prostaglandin E1 on lipid mobilization in the chicken [J]. Canadian J Physiol Pharmacol, 1971, 49 (5): 394-399
29 林善枝, 张志毅, 林元震, 张谦, 郭睆. 钙-钙调素在零下低温诱导毛白杨扦插苗抗冻性中的作用[J]. 植物生理与分子生物学学报, 2004, 30 (1): 59-68 [Lin SZ, Zhang ZY, Lin YZ, Zhang Q, Guo H. The role of calcium and calmodulin in freezing-induced freezing resistance of populus tomentosa cuttings [J]. J Plant Physiol Molecul Biol, 2004, 30 (1): 59-68]
30 吴远航, 刘秦, 刘攀道, 郭鹏飞, 李敏, 蒋凌雁. 木薯苯丙氨酸解氨酶基因的克隆及其对低温胁迫的响应[J]. 热带作物学报, 2019, 40 (3): 73-79 [Wu YH, Liu Q, Liu PD, Guo PF, Li M, Jiang LY. Cloning of cassava phenylalanine ammonia lyase genes and their responses to low temperature stress [J]. Chin J Trop Crops, 2019, 40 (3): 73-79]
31 高福元, 张吉立, 刘振平. 冬季低温对4种彩叶植物SOD、POD活性影响的研究[J]. 中国农学通报, 2010, 26 (5): 169-173 [Gao FY, Zhang JL, Liu ZP. Studies on effects of four species of color-leafed plants on SOD, POD activity of the cold-resistance in winter [J]. Chin Agric Sci Bull, 2010, 26 (5): 169-173]
32 赵正阶. 中国鸟类志(上卷)[M]. 长春: 吉林科学技术出版社, 2001: 390-392 [Zhao ZJ. Avifauna of China (Vol. 1) [M]. Changchun: Jilin Science and Technology Press, 2001: 390-392]
33 Latinne A, Galan M, Waengsothorn S. Diet analysis of Leopoldamys neilli, a cave-dwelling rodent in Southeast Asia, using next-generation sequencing from feces [J]. J Cave Karst Stud Nat Speleol Soc Bull, 2014, 76: 139-145
34 Hofreiter M, Poinar HN, Spaulding WG, Bauer K, Martin PS, Possnert G, P??bo S. A molecular analysis of ground sloth diet through the last glaciation [J]. Molecul Ecol, 2001, 9 (12): 1975-1984
35 Blaxter M, Mann J, Chapman T, Thomas F, Abebe E. Defining operational taxonomic units using DNA barcode data [J]. Philosoph Transact Royal Soci B Biol Sci, 2005, 360 (1462): 1935-1943
36 Johnson MK, Wofford H, peorson HA. Digestion and fragmentation: influence on dietary analysis [J]. J Wildlife Manage, 1983, 47 (3): 877
37 高中信, 陈化鹏, 王筱平. 粪便分析法测定植食动物食性的评价[J]. 兽类学报, 1991, 11 (3): 186-193 [Gao ZX, Chen HP, Wang XP. Evaluation of fecal analysis to determining food habits of herbivores [J]. Acta Theriol Sin, 1991, 11 (3): 186-193]
38 Wang XN, Lou HX. Advances in studies on bioactive compounds from bryophytes [J]. Chin Tradi Herbal Drugs, 2005, 36 (2): 303- 307
39 汪庆, 罗宣. 苔藓植物的主要次生代谢产物与有害生物防治[J]. 贵州科学, 2001 (4): 93-100 [Wang Q, Luo X. The application of bryophytes in plant prevention [J]. Guizhou Sci, 2001 (4): 93-100]
40 冯超, 白学良. 驯鹿对苔藓植物的选择食用及其生境的物种多样性[J]. 生态学报, 2011, 31 (13): 3830-3838 [The bryophyte consumed by reindeers and species diversity of bryophyte in reindeer habitats [J]. Acta Ecol Sin, 2011, 31 (13): 3830-3838]
41 Selman C, Mclaren JS, Himanka MJ, Speakman JR. Effect of long-term cold exposure on antioxidant enzyme activities in a small mammal [J]. Free Radical Biol Med, 2000, 28 (8): 1279-1285
42 陈可新, 王桂英, 赵志军. 低温对黑线仓鼠能量代谢、抗氧化能力和氧化应激的影响[J]. 兽类学报, 2015, 35 (4): 412-421 [Chen KX, Wang GY, Zhao ZJ. Effects of cold temperatures on energy metabolism, antioxidants and oxidative stress in striped hamsters [J]. Acta Theriol Sin, 2015, 35 (4): 412-421]
43 赵春丽, 陈家兰, 王乐, 陈何, 郑友峰, 肖昉, 赖钟雄, 刘生财. 温度对苋菜幼苗中甜菜色素含量及其相关基因表达的影响[J]. 应用与环境生物学报, 2020, 26 (4): 1-8 [Zhao CL, Chen JL, Wang L, Zheng YF, Xiao F, Lai ZX, Liu SC. Effect of temperature on betalain content and related genes expression in amaranth seedlings [J]. Chin J Appl Environ Biol, 2020, 26 (4): 1-8]
44 刘娟, 黎黎, 陆柄辰, 邓朴, 艾辛. 温度调控植物开花研究进展[J]. 应用与环境生物学报, 2020, 26 (2): 1-14 [Liu J, Li L, Lu BC, Den P, Ai X. Research progress of temperature-regulated flowering of plants [J]. Chin J Appl Environ Biol, 2020, 26 (2): 1-14]

相似文献/References:

[1]林波,刘庆,吴彦,等.川西亚高山人工针叶林枯枝落叶及苔藓层的持水性能[J].应用与环境生物学报,2002,8(03):234.
 LIN Bo,et al..Water holding capacity of moss and litter layers of subalpine coniferous plantations in western Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2002,8(06):234.

更新日期/Last Update: 2020-12-25