|本期目录/Table of Contents|

[1]张凤英,冯毅,廖梓延,等.生态因子对川渝地区壳斗科植物物种丰富度的影响[J].应用与环境生物学报,2020,26(03):689-696.[doi:10.19675/j.cnki.1006-687x.2019.08013]
 ZHANG Fengying,FENG Yi,et al.The effect of ecological factors on Fagaceae species richness in Sichuan-Chongqing region, China[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):689-696.[doi:10.19675/j.cnki.1006-687x.2019.08013]
点击复制

生态因子对川渝地区壳斗科植物物种丰富度的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
689-696
栏目:
研究论文
出版日期:
2020-06-25

文章信息/Info

Title:
The effect of ecological factors on Fagaceae species richness in Sichuan-Chongqing region, China
作者:
张凤英冯毅廖梓延伍小刚潘开文谭雪熊勤犁唐天文张兴华虞超张林
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049 3成都市龙泉山城市森林公园管委会 成都 610100 4成都市农林科学研究院 成都 611130
Author(s):
ZHANG Fengying1 2 FENG Yi3 4 LIAO Ziyan1 2 WU Xiaogang1 PAN Kaiwen1 TAN Xue1 2 XIONG Qinli1 TANG Tianwen1 2 ZHANG Xinghua3 YU Chao3 & ZHANG Lin1?
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Chengdu Management Committee of Longquanshan City Forest Park, Chengdu 610100, China 4 Chengdu Academy of Agriculture and Forosttry Sciences, Chengdu 611130, China
关键词:
壳斗科植物地理加权模型川渝地区物种丰富度生态因子
Keywords:
Fagaceae geographically weighted regression Sichuan-Chongqing region species richness ecological factor
DOI:
10.19675/j.cnki.1006-687x.2019.08013
摘要:
西南川渝地区是我国壳斗科植物分布最为丰富的地区之一. 以川渝地区壳斗科植物为研究对象,以皮尔逊相关系数(r < 0.8)以及方差膨胀因子(VIF < 10)为准则,选取代表现代气候、生境异质性和历史气候变化的9个生态因子,基于地理加权回归模型(GWR)探究生态因子对壳斗科植物物种丰富度的影响,并与经典的全局最小二乘回归法(OLS)进行比较. 结果显示:(1)分布在川渝地区的壳斗科植物有6属共74种,主要以栎属(Quercus)和柯属(Lithocarpus)为主;(2)物种丰富度(SR)表现为南部最高,物种丰富度中心为川西南锦屏山东南部—鲁南山西侧、横断山中部的邛崃山南段—大凉山北段以及四川盆地东南缘大娄山东段,可达到29-35种;(3)GWR模型预测精度优于OLS,其预测结果表明海拔变幅、潜在蒸散量和最暖季降雨量是影响川渝壳斗科植物物种丰富度的主要因子,且影响程度表现出明显的空间差异性. 整体来看,GWR模型可为探究物种-生态因子关系的空间异质特征提供一种新的方法,在生物多样性研究中具有较好的应用前景. (图3 表2 参51)
Abstract:
The Sichuan-Chongqing region in Southwestern China is one of the regions where Fagaceae plants are the most abundant. This study focused on species richness of Fagaceae in the aforementioned region. We used the Pearson correlation coefficient (r < 0.8) and the variance expansion factor (VIF < 10) as two criteria to select nine ecological factors that represent the modern climate, historical climate change, and habitat heterogeneity. We explored the effects of these factors on species richness based on a geographically weighted regression (GWR) model. The results showed that (1) there were 74 species from six genera of Fagaceae that were mainly composed of Quercus and Lithocarpus genera in the Sichuan-Chongqing region. (2) Species richness (SR) was the highest in the south, with 29-35 species in the southeast of Jinping Mountains, the west of Lunan Mountains, the middle of Hengduan Mountains, and the eastern part of Dalou Mountains in the southeast of Sichuan Basin. (3) The prediction accuracy of the GWR model is better than ordinary least square (OLS) model. Simulation results of the GWR model showed that the range in elevation, potential evapotranspiration, and precipitation of the warmest quarter were the main factors affecting the SR of Fagaceae; moreover, the effects on SR of the aforementioned factors indicate significant spatial differences. Overall, the GWR model provided a new method to explore the relationship between spatial heterogeneity and species-ecological factors and has good potential applications in biodiversity research.

参考文献/References:

1 马克平, 钱迎倩. 生物多样性保护及其研究进展[J]. 应用与环境生物学报, 1998, 4 (1): 95-99 [Ma KP, Qian YQ. Biodiversity conservation and its research progress [J]. Chin J Appl Environ Biol, 1998, 4 (1): 95-99]
2 Liu SL, Dong YH, Sun YX, Li JR, An Y, Shi FN. Modelling the spatial pattern of biodiversity utilizing the high-resolution tree cover data at large scale: case study in Yunnan province, Southwest China [J]. Ecol Eng, 2019, 134: 1-8
3 Gary Y, Parmesan C. A globally coherent fingerprint of climate change impacts across natural systems [J]. Nature, 2003, 421: 37-42
4 谭雪, 张林, 张爱平, 王毅, 黄丹, 伍小刚, 孙晓铭, 熊勤犁, 潘开文. 孑遗植物长苞铁杉(Tsuga longibracteata)分布格局对未来气候变化的响应[J]. 生态学报, 2018, 38 (24): 8934-8945 [Tan X, Zhang L, Zhang AP, Wang Y, Huang D, Wu XG, Sun XM, Xiong QL, Pan KW. The suitable distribution area of Tsuga longibracteata revealed by a climate and spatial constraint model under future climate change scenarios [J]. Acta Ecol Sin, 2018, 38 (24): 8934-8945]
5 Badano EI, Guerra-Coss FA, Sanchez-montes de Oca EJ, Briones-Herrera CI, Gelviz-Gelvez SM. Climate change effects on early stages of Quercus ariifolia (Fagaceae), an endemic oak from seasonally dry forests of Mexico [J]. Acta Bot Mexicana, 2019, 126: (e1466)
6 Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? [J]. Global Ecol Biogeogr, 2003, 12 (5): 361-371
7 刘怿宁, 乔秀娟, 唐志尧. 寻求生物多样性分布格局的形成机制[J]. 自然杂志, 2010, 32 (5): 260-266 [Liu YN, Qiao XJ, Tang ZY. Exploring mechanisms of biodiversity patterns [J]. Chin J Nat, 2010, 32 (5): 260-266]
8 O’brien EM. Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model [J]. J Biogeogr, 1998, 25: 379-398
9 Currie DJ. Energy and large-scale patterns of animal and plant-species richness [J]. Am Nat, 1991, 137 (1): 27-49
10 Francis AP, Currie DJ. A globally consistent richness - climate relationship for angiosperms [J]. Am Nat, 2003, 161 (4): 523-536
11 Xu X, Wang Z, Rahbek C, Sanders NJ, Fang JY. Geographical variation in the importance of water and energy for oak diversity [J]. J Biogeogr, 2016, 43 (2): 279-288
12 Chen SB, Jiang Gaoming, Ouyang ZY, Xu WH, Yi X. Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China [J]. J Syst Evol, 2011,49 (2): 95-107
13 Ordonez A, Svenning JC. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders [J]. Sci Rep, 2017, 7: 42988
14 Fotheingham AS, Brunsdon C, Charlton M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships [M]. New York: John Wiley and Sons, 2003: 1-282
15 Nogues-bravo D. Comparing regression methods to predict species richness patterns [J]. Web Ecol, 2009, 9: 58-67
16 Ozdemirel KB. Exploring spatial relationship between butterfly richness and environmental predictors at a local scale in north-eastern Turkey [J]. Appl Ecol Environ Res, 2013, 11 (3): 407-422
17 Holloway P, Miller J. Exploring spatial scale, autocorrelation and nonstationarity of bird species richness patterns [J]. Isprs Int J Geo-Inf, 2015, 4 (2): 783-798
18 Tripathi P, Behera MD, Roy PS. Spatial heterogeneity of climate explains plant richness distribution at the regional scale in India [J]. PLoS ONE, 2019, 14 (6): e0218322
19 Liu YP, Shen ZH, Wang QG, Su XY, Zhang WJ, Shrestha N, Xu XT, Wang ZH. Determinants of richness patterns differ between rare and common species: implications for Gesneriaceae conservation in China [J]. Divers Distrib, 2017, 23 (3): 235-246
20 刘茂松, 洪必恭. 中国壳斗科的地理分布及其与气候条件的关系[J]. 植物生态学报, 1998, 22 (1): 41-50 [Liu MS, Hong BG. The distribution of Fagaceae in China and its relationship with climate and geographic characters [J]. Acta Phytoecol Sin, 1998, 22 (1): 41-50]
21 冯建孟, 徐成东. 中国种子植物物种丰富度的大尺度分布格局及其与地理因子的关系[J]. 生态环境学报, 2009, 18 (1): 249-254 [Feng JM, Xu CD. Distribution patterns of species richness of seed plants in china and its relationship with geographical factors [J]. Ecol Environ Sci, 2009, 18 (1): 249-254]
22 周伟, 夏念和. 我国壳斗科植物资源——尚待开发的宝库[J]. 林业资源管理, 2011 (2): 93-100 [Zhou W, Xia NH. The Chinese Fagaceae resources——A treasury imperative for development [J]. For Res Manage, 2011 (2): 93-96+100]
23 周浙昆. 壳斗科的地质历史及其系统学和植物地理学意义[J]. 植物分类学报, 1999, 37 (4): 66-82 [Zhou ZK. Fossils of the Fagaceae and their implications in systematics and biogeography [J]. Acta Phytotax Sin, 1999, 37 (4): 66-82]
24 Xu XT, Dimitrov D, Shrestha N, Rahbek C, Wang ZH. A consistent species richness-climate relationship for oaks across the northern hemisphere [J]. Glob Ecol Biog, 2019, 10 (1): 1-16
25 Huang CJ, Zhang YT, Bruce B. Flora of China [M]. Beijing: Science Press, 1999: 314-400
26 刘尉, 肖前刚, 李文俊, 谢忠安, 张俊. 浅谈壳斗科植物容器育苗技术[J]. 园艺与种苗, 2018 (11): 9-10+29 [Liu W, Xiao CG, Li WJ, Li WJ, Xie ZA, Zhang Jun. Discussion on container seedling raising technology of the Fagaceae species [J]. Hortic Seed, 2018, (11): 9-10+29
27 刘兴良, 刘世荣, 何飞, 杨冬升, 杨玉坡, 马钦彦. 中国硬叶常绿高山栎类植物的分类与现代地理分布[J]. 四川林业科技, 2008, 29 (3): 1-7 [Liu XL, Liu SR, He F, Yang DS, Yang YP, Ma QY. Taxonomy and modern geographical distribution of species of sclerophyllous alpine oak plants in China [J]. J Sichuan For Sci Technol, 2008, 29 (3): 1-7
28 王进修, 刘玉成. 三峡库区重庆市壳斗科植物区系及其为建群种的森林类型[J]. 西南大学学报(自然科学版), 2007, 29 (6): 51-55 [Wang JX, Liu YC. Floristic characteristics of Fagaceae pants and forest types with Fagaceae species as their constructive species in Chongqing region of three gorges reservoir area [J]. J Southwest Univ (Nat Sci Ed) 2007, 29 (6): 51-55]
29 《四川植物志》 编辑委员会. 四川植物志(第二十一卷)[M]. 成都: 四川科学技术出版社, 2012: 65-156 [Editorial Board of the Flora Sichuan. Flora Sichuanica Tomus 21 [M]. Chengdu: Sichuan Science and Technology Press, 2012: 65-156]
30 王静, 唐亚, 夏怡凡, 张立芸. 川渝地区马先蒿属物种丰富度空间分布格局及其影响因素[J]. 云南植物研究, 2007, 29 (1): 51-57 [Wang J, Tang Y, Xia YF, Zhang LY. Geographical pattern of species richenss of Pedicularis (Scrophulariaceae) in Sichuan and Chongqing and its relationship with main environmental factors [J]. Acta Bot Yunnan, 2007, 29 (1): 51-57]
31 Brown JL, Bennett JR, French CM. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses [J]. Peer J, 2017, 5: e4095
32 Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas [J]. Int J Climatol, 2017, 37 (12): 4302-4315
33 Raes N, Cannon C H, Hijmans RJ, Piessens T, Saw LG, Welzen PC, Silk JWF. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima [J]. PNAS, 2014, 111 (47): 16790-16795
34 O’brien RM. A caution regarding rules of thumb for variance inflation factors [J]. Qual Quant, 2007, 41 (5): 673-690
35 Rangel TF, Diniz-Filho JAF, Binil LM. SAM: a comprehensive application for spatial a analysis in macroecology [J]. Ecography, 2010, 33 (1): 46-50
36 陈彦光. 基于Moran统计量的空间自相关理论发展和方法改进[J]. 地理研究, 2009, 28 (6): 1449-1463 [Chen YG. Reconstructing the mathematical process of spatial autocorrelation based on Moran’s statistics [J]. Geogr Res, 2009, 28 (6): 1449-1463]
37 税伟, 杜勇, 陈毅平, 简小枚, 范冰雄. 基于地理加权回归的茶叶种植专业化空间格局及影响因素—以福建省安溪县为例[J]. 应用生态学报, 2017, 28 (4): 1298-1308 [Shui W, Du Y, Chen YP, Jian XM, Fan BX. Spatial patterns and influence factors of specialization in tea cultivaton based on geographically weighted regression model: A case study of Anxi county of Fujian province, China [J]. Chin J Appl Ecol, 2017, 28 (4): 1298-1308]
38 Cavanaugh JE. Unifying the derivations for the Akaike and corrected Akaike information criteria [J]. Stat Probabil Lett, 1997, 33 (2): 201-208
39 Diniz-Filho JAF, Bini LM, Hawkins BA. Spatial autocorrelation and red herrings in geographical [J]. Glob Ecol Biogeogr, 2003, 12: 53-64
40 邱丽氚, 常虹, 路丹桂, 柳涛. 中国壳斗科植物属的空间多样性格局及其指标研究[J]. 西北植物学报, 2018, 38 (4): 761-769 [Qiu LC, Chang H, Lu DG, Liu T. Study on spatial diversity patterns and its indices of all genera in Fagaceae of China [J]. Acta Bot Bor-Occid Sin, 2018, 38 (4): 761-769]
41 李文政. 云南壳斗科植物的地理分布及区系地理的研究[J]. 热带地理, 1989, 9 (3): 265-270 [Li WZ. Study on the geographical distribution and floristic geography of Fagaceae flora in Yunnan province [J]. 1989, 9 (3): 265-270]
42 郑维艳, 曾文豪, 唐一思, 石慰, 曹坤芳. 中国大陆北热带及亚热带地区樟科、壳斗科物种多样性及其生物地理格局分析[J]. 生态学报, 2018, 38 (4): 8676-8687 [Zheng WY, Zeng WH, Tang YS, Shi W, Cao KF. Species diversity and biogeographical patterns of Lauraceae and Fagaceae in northern tropical and subtropical regions of China [J]. Acta Ecol Sin, 2018, 38 (24): 8676-8687]
43 Stein A, Gerstner K, Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales [J]. Ecol Lett, 2014, 17 (7): 866-880
44 Wang Z, Fang J, Tang Z, Lin X. Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants [J]. Ecography, 2012, 35 (12): 1124-1133
45 吕丽莎, 蔡宏宇, 杨永, 王志恒, 曾辉. 中国裸子植物的物种多样性格局及其影响因子[J]. 生物多样性, 2018, 26 (11): 1133-1146 [Lv LS, Cai HY, Yang Y, Wang ZH, Zeng H. Geographic patterns and environmental determinants of gymnosperm species diversity in China [J]. Biodivers Sci, 2018, 26 (11): 1133-1146]
46 邹东廷, 王庆刚, 罗奥,王志恒. 中国蔷薇科植物多样性格局及其资源植物保护现状[J]. 植物生态学报, 2019, 43 (1): 1-15 [Zhou DY, Wang QG, Luo Ao, Wang ZH. Species richness patterns and resource plant conservation assessments of Rosaceae in China [J]. Chin J Plant Ecol, 2019, 43 (1): 1-15]
47 唐领余, 李春海, 张小平, 邵剑文, 周忠泽, 凌超豪. 第四纪地层中壳斗科植物花粉化石及其与气候地理条件的关系[J]. 古生物学报, 2018, 57 (3): 387-410 [Tang LY, Li CH, Zhang XP, Shao JW, Zhou ZZ, Ling CH. Pollen morphology of Fagaceae in quaternary deposits of China and its relationship with climatic and geographic characters [J]. Acta Palaeontol Sin, 2018, 57 (3): 387-410]
48 庄平, 高贤明. 华西雨屏带及其对我国生物多样性保育的意义[J]. 生物多样性, 2002, 10 (3): 339-344 [Zhuang P, Gao XM. The concept of the rainy zone of west China and its significance to the biodiversity conservation in China [J]. Biodivers Sci, 2002, 10 (3): 339-344]
49 Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC. The influence of late quaternary climate-change velocity on species endemism [J]. Science, 2011, 334 (6056): 660-664
50 Shrestha N, Wang ZH, Su XY, Xu XT, Lyu L, Liu YP, Dimitrov D, Kennedy JD, Wang QG, Tang ZY, Feng XJ. Global patterns of Rhododendron diversity: the role of evolutionary time and diversification rates [J]. Glob Ecol Biogeogr, 2018, 27 (8): 913-924
51 管中天. 四川松杉植物地理[M]. 成都: 四川科学技术出版社, 1990: 1-20 [Guan ZT. The Geography of Conifers in Sichuan [M]. Chengdu: Sichuan Science and Technology Press, 1990: 1-20]

相似文献/References:

[1]张凤英 冯毅 廖梓延 伍小刚 潘开文 谭雪,熊勤犁 唐天文 张兴华 虞超 张林**.生态因子对川渝地区壳斗科植物物种丰富度的影响[J].应用与环境生物学报,2020,26(04):1.[doi:10.19675/j.cnki.1006-687x.2019.08013]
 ZHANG Fengying,FENG Yi,et al.The effect of ecological factors of Fagaceae species richness in Sichuan-Chongqing region, China[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.08013]

更新日期/Last Update: 2020-06-25