|本期目录/Table of Contents|

[1]孙建瑞,赵君峰,符丹丹,等.Chlorella vulgaris胞内多糖抗氧化活性及其与糖代谢相关酶的关系[J].应用与环境生物学报,2020,26(03):512-519.[doi:10.19675/j.cnki.1006-687x.2019.07064]
 SUN Jianrui,ZHAO Junfeng,FU Dandan,et al.Assessing the antioxidant activity of intracellular polysaccharide from Chlorella vulgaris and its relationship with glycometabolism-related enzymes[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):512-519.[doi:10.19675/j.cnki.1006-687x.2019.07064]
点击复制

Chlorella vulgaris胞内多糖抗氧化活性及其与糖代谢相关酶的关系
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
512-519
栏目:
研究论文
出版日期:
2020-06-25

文章信息/Info

Title:
Assessing the antioxidant activity of intracellular polysaccharide from Chlorella vulgaris and its relationship with glycometabolism-related enzymes
作者:
孙建瑞赵君峰符丹丹张彬古绍彬王大红
河南科技大学食品与生物工程学院, 河南省食品微生物工程技术研究中心 洛阳 471023
Author(s):
SUN Jianrui ZHAO Junfeng FU Dandan ZHANG Bin GU Shaobin & WANG Dahong?
College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
关键词:
小球藻胞内多糖抗氧化活性糖代谢相关酶
Keywords:
Chlorella vulgaris intracellular polysaccharide antioxidant activity glycometabolism related enzyme
DOI:
10.19675/j.cnki.1006-687x.2019.07064
摘要:
对淡水微藻Chlorella vulgaris 224胞内多糖的抗氧化活性进行研究,并对其在不同培养条件下生长发育过程中胞内多糖的积累与糖代谢相关酶的关系进行分析. C. vulgaris 224胞内多糖浓度为60 mg/mL时其对DPPH自由基的清除率为61.62%,浓度为30 mg/mL时其对羟基自由基的清除率超过50%,结果表明其胞内多糖具有较强的抗氧化活性. 低盐条件下己糖激酶、苹果酸脱氢酶、6-磷酸葡萄糖脱氢酶和磷酸葡萄糖异构酶的活性均高于正常试验组;低氮条件下己糖激酶、苹果酸脱氢酶、6-磷酸葡萄糖脱氢酶的活性均低于正常试验组,而磷酸葡萄糖异构酶的活性高于正常组;添加NaHCO3时己糖激酶、苹果酸脱氢酶、6-磷酸葡萄糖脱氢酶的活性均低于正常组,而磷酸葡萄糖异构酶的活性高于正常组;相关性分析发现己糖激酶、苹果酸脱氢酶和6-磷酸葡萄糖脱氢酶与其胞内多糖的积累呈显著相关(P < 0.05),而磷酸葡萄糖异构酶与胞内多糖积累的相关性未到达显著水平(P > 0.05). 本研究表明己糖激酶、苹果酸脱氢酶和6-磷酸葡萄糖脱氢酶是调控C. vulgaris 224胞内多糖积累的关键酶,结果可为筛选天然抗氧化物质提供一定理论基础. (图6 表1 参35)
Abstract:
In this study, the antioxidant activity of intracellular polysaccharide derived from Chlorella vulgaris 224 was assessed. Thereafter, the relationship between accumulation of intracellular polysaccharide and glycometabolism-related enzymes during the growth and development of C. vulgaris 224 under different culture conditions was analyzed. The clearance rate of DPPH free radical was estimated as 61.62% when the concentration of intracellular polysaccharide was 60 mg/mL, and the clearance rate of hydroxyl radical exceeded 50% when the concentration of intracellular polysaccharide was 30 mg/mL. The activities of HK, MDH, G6PDH, and PGI under low salt condition were higher than those in normal condition. The activities of HK, MDH, and G6PDH under low nitrogen condition were lower than that in normal condition, while the activity of PGI was higher than that in normal condition. The activities of HK, MDH, and G6PDH were lower than that in normal condition when NaHCO3 was added, while the activity of PGI was higher than that in normal condition. Results of correlation analysis revealed that HK, G6PDH, and MDH were significantly correlation (P < 0.05) with intracellular polysaccharide accumulation, but the correlation between PGI and intracellular polysaccharide accumulation was not significant (P > 0.05). These results indicate that the intracellular polysaccharide of C. vulgaris 224 exhibits strong antioxidant activity. In addition, we believe that HK, G6PDH, and MDH are the key enzymes regulating the accumulation of intracellular polysaccharide in C. vulgaris 224.

参考文献/References:

1 Shen GZ, Qu D, Li KP, Li M. Composition of extracellular and intracellular polymeric substances produced by scenedesmus and microcystis [J]. Environ Eng Sci, 2017, 34 (12): 887-894
2 Sun Z, Li T, Zhou ZG, Jiang Y. Microalgae as a source of lutein: chemistry, biosynthesis, and carotenogenesis [J]. Adv Biochem Eng Biotechnol, 2016, 153: 37-58
3 Su G, Jiao K, Li Z, Guo X, Chang J, Ndikubwimana T, Sun Y, Zeng X, Lu Y, Lin L. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum [J]. Bioproc Biosyst Eng, 2016, 39 (7): 1129-1136
4 He BX, Hou LL, Dong MM, Shi JW, Huang XY, Ding YT, Cong XM, Zhang F, Zhang XC, Zang XN. Transcriptome analysis in haematococcus pluvialis: astaxanthin induction by high light with acetate and Fe2+ [J]. Int J Mol Sci, 2018, 19 (1):175-192
5 Diprat AB, Menegol T, Boelter JF, Zmozinski A, Rodrigues Vale MG , Rodrigues E, Rech R. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids [J]. J Sci Food Agric, 2016, 97 (10): 3463-3468
6 Carneiro DC, Oliveira MM, Lima STC. Estimating protein quantities from microalgae: protein per biomass percentage, spectroscopic concentration, and lectin content [J]. Chem Papers, 2019, 73 (10): 2535-2540
7 Mariana B, Patrcia V, Andrade PB. Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases [J]. Mar Drugs, 2014, 12 (9): 4934-4972
8 Morais MG, Vaz BS, Morais EG, Costa JAV. Biologically active metabolites synthesized by microalgae [J]. Biomed Res Int, 2015, 4: 1-15
9 陈宇婷. 两种海洋微藻多糖抑制肿瘤血管生成活性的研究[D]. 大连: 大连海洋大学, 2017 [Chen YT. Studies on the anti-angiogenesis activity of the polysaccharides from marine microalgae [D]. Dalian: Dalian Ocean University, 2017]
10 李洁琼, 刘红全, 袁莎. 微藻多糖的研究进展[J]. 现代化工, 2016, 36 (6): 60-62 [Li JQ, Liu HQ, Yuan S. Research progress of microalgae polysaccharide [J]. Mod Chem Ind, 2016, 36 (6): 60-62]
11 Roeselers G, Loosdrecht MCM, Muyzer G. Phototrophic biofilms and their potential applications [J]. J Appl Phycol, 2008, 20: 227-235
12 Akao Y, Ebihara T, Masuda H, Saeki Y, Akazawa T, Hazeki K, Hazeki O, Matsumoto M, Seya T. Enhancement of antitumor natural killer cell activation by orally administered Spirulina extract in mice [J]. Cancer Sci, 2009, 100 (8): 1494-1501
13 Park JK, Kim ZH, Lee CG, Synytsya A, Jo HS, Kim SO, Park JW, Park Y. Characterization and immunostimulating activity of a water-soluble polysaccharide isolated from Haematococcus lacustris [J]. Biotechnol Bioproc Eng, 2011, 16 (6): 1090-1098
14 Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum [J]. Phytother Res, 2003, 17 (6): 665-670
15 Mansour HA, Shoman SA, Kdodier MH. Antiviral effect of edaphic cyanophytes on rabies and herpes-1 viruses [J]. Acta Biol Hung, 2011, 62 (2): 194-203.
16 陈晓清, 郑怡, 林雄平. 二种微藻多糖与蛋白质提取物的抗菌活性[J]. 福建师范大学学报(自然科学版), 2005, 21 (2): 76-79 [Chen XQ, Zheng Y, Lin XP. Antimicrobial activities of the polysaccharide and protein extracts from two species of microalgae [J]. J Fujian Norm Univ (Nat Sci Ed), 2005, 21 (2): 76-79]
17 Dvir I, Stark AH, Chayoth R, Madar Z, Arad SM. Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats [J]. Nutrients, 2009, 1 (2): 156-167
18 Chen B, You W, Huang J, Yu Y, Chen W. Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata [J]. World J Microbiol Biotechnol, 2010, 26 (5): 833-840
19 Tannin-Spitz T, Bergman M, Van-Moppes D, Grossman S, Arad S. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp [J]. J Appl Phycol, 2005, 17 (3): 215-222
20 王镜岩, 朱圣庚, 徐长法. 生物化学[M]. 北京: 高等教育出版社, 2002 [Wang JY, Zhu SG, Xu CF. Biochemistry [M]. Beijing: Higher Education Press, 2002]
21 罗玉. 植物中的糖代谢及其相关酶[J]. 文山师范高等专科学校学报, 2004, 17 (2): 155-159 [Luo Y. The sugar metabolism and the relational enzymes in plants[J]. J Wenshan Teach Coll, 2004, 17 (2): 155-159]
22 Greenfield LK, Whitfield C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways [J]. Carbohyd Res, 2012, 356 (13): 12-24
23 刘义. 产油脂微藻筛选分离及其多样性研究[D]. 成都: 四川大学, 2012 [Liu Y. Screen separation and biodiversity of oleaginous microalgae in China [D]. Chengdu: Sichuan University, 2012]
24 孙建瑞, 宋涛, 孙显, 宋济君, 王川, 乔代蓉. 富油小球藻Chlorella protothecoides胞内多糖和油脂提取工艺优化[J]. 应用与环境生物学报, 2014, 20 (4): 615-620 [Sun JR, Song T, Sun X, Song JJ, Wang C, Qiao DR. Extraction optimization of intracellular polysaccharide and lipid from oleaginous Chlorella protothecoides [J]. Chin J Appl Environ Biol, 2014, 20 (4): 615-620]
25 席波, 宋东辉, 孙晶, 刘凤路, 邸富荣. 十种微藻粗多糖的抑菌作用及海水小球藻粗多糖的抗氧化活性[J]. 天津科技大学学报, 2015, 30 (5): 20-25 [Xi B, Song DH, Sun J, Liu FL, Di FR. Anti-microbial activities of crude polysaccharide extracts from ten species of microalgae and the antioxidant activities of crude polysaccharide extracts from marine chlorella vulgaris [J]. J Tianjing Univ Sci Technol, 2015, 30 (5): 20-25]
26 陈艳丽. 不同海洋生境来源微生物胞外多糖的结构及抗氧化活性研究[D]. 青岛: 中国海洋大学, 2013 [Chen YL. Structure and antioxidant activity of different marine habitats sources extracellular polysaccharides [D]. Qingdao: Ocean University of China, 2013]
27 李战. 三种紫球藻培养、胞外多糖提取及RAPD分析[D]. 上海: 上海师范大学, 2004 [Li Z. Culture, poIysaccharide extraction and RAPD analysis of three species of Porphyridium [D]. Shanghai: Shanghai Normal University, 2004]
28 原江锋, 赵君峰, 刘建利, 邱智军, 王大红. 连翘叶中连翘酯苷A的提取及其抗氧化活性[J]. 食品科学, 2016, 37 (1): 94-98 [Yuan JF, Zhao JF, Liu JL, Qiu ZJ, Wang DH. Extraction and antioxidant effect of forsythiaside A from Forsythia suspense leaves [J]. Food Sci, 2016, 37 (1): 94-98]
29 孙颖颖, 王辉. 球等鞭金藻胞外多糖的体外抗氧化活性和理化性质的初步分析[J]. 海洋科学, 2013, 37 (5):45-49 [Sun YY, Wang H. Study of in vitro antioxidation and physical and chemical characteristics analysis of extracellular polysaccharides iso-lated from Isochrysis galbana [J]. Mar Sci, 2013, 37 (5): 45-49]
30 赵洲, 陈向东, 王立华, 王秋颖, 兰进. 灵芝子实体多糖积累和糖代谢相关酶的关系研究[J]. 中国农学通报, 2012, 28 (22): 253-257 [Zhao Z, Chen XD, Wang LH, Wang QY, Lan J. Studies on the correlation between polysaccharides accumulation and sugar metabolizing enzymes in Ganoderma lucidum [J]. Chin Agric Sci Bull, 2012, 28 (22): 253-257 ]
31 Varum KM, Ostgaard K, Grimsrud K. Diurnal rhythms in carbohydrate metabolism of the marine diatom Skeletonema costatum, (Grev.) Cleve [J]. J Exp Mar Biol Ecol, 1986, 102 (2): 249-256
32 韩娟. 类波氏真眼点藻的主要生化组成分析及其金藻昆布糖代谢相关酶的活性测定[D]. 广州: 暨南大学, 2013 [Han J. The analysis of main biochemical composition and determination of the enzymes involved in the chrysolaminarin metabolizing of Eustigmatos cf. polyphem [D]. Guangzhou: Jinan University, 2013]
33 Bart D, Luc DV. Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysacharide biosynthesis by Streptococcus thermophiles LY03 [J]. Appl Environ Microbiol, 2000, 66 (8): 3519-3527
34 Tang YJ, Zhong JJ. Exopolysaccharide biosynthesis and related enzyme activities of the medicinal fungus, Ganoderma lucidum, grown on lactose in a bioreactor [J]. Biotechnol Lett, 2002, 24: 1023-1026
35 Wang SQ, Wang B, Hua WP, Niu JF, Dang KK, Qiang Y, Wang ZZ. De novo assembly and analysis of Polygonatum sibiricum transcriptome and identification of genes involved in polysaccharide biosynthesis [J]. Int J Mol Sci, 2017, 18: 1950-1966

相似文献/References:

[1]李坤,李琳,侯和胜,等.Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用[J].应用与环境生物学报,2002,8(04):395.
 LI Kun,et al..Study on toxicity of heavy metal ions to two species of marine unicellular algae[J].Chinese Journal of Applied & Environmental Biology,2002,8(03):395.
[2]孙建瑞,宋涛,孙显,等.富油小球藻Chlorella protothecoides胞内多糖和油脂提取工艺优化[J].应用与环境生物学报,2014,20(04):615.[doi:10.3724/SP.J.1145.2013.12039]
 SUN Jianrui,SONG Tao,SUN Xian,et al.Extraction optimization of intracellular polysaccharide and lipid from oleaginous Chlorella protothecoides[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):615.[doi:10.3724/SP.J.1145.2013.12039]

更新日期/Last Update: 2020-06-25