1 Zhu JY, Sae-Seaw J, Wang ZY. Brassinosteroid signaling [J]. Development, 2013, 140 (8): 1615-1620 2 Sun Y, Fan XY, Cao DM, Tang WQ, He K, Zhu JY, He JX, Bai MY, Zhu SW, Oh E, Patil S, Kim TW, Ji HK, Wong WH, Rhee SY, Wang ZY. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis [J]. Dev Cell, 2010, 19 (5): 765-777 3 Irani NG, Rubbo SD, Mylle E, Begin JV, Schneider-Pizoń J, Hniliková J, ?í?a M, Buyst D, Vilarrasa-Blasi J, Szatmári AM, Damme DV, Mishev K, Codreanu MC, Kohout L, Strnad M, Ca?o-Delgado AI, Friml J, Madder A, Russinova E. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane [J]. Nat Chem Biol, 2012, 8 (6): 583-589 4 Bojar D, Martinez J, Santiago J, Rybin V, Bayliss R, Hothorn M. Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation [J]. Plant J, 2014, 78 (1): 31-43 5 王倩楠. BRI1特异磷酸化位点对植物生长发育的影响[D]. 杨凌: 西北农林科技大学, 2015 [Wang QN. Role of specific phosphorylation sites of brassinosteroid inensitivel receptor kinase in plant growth and development [D]. Yangling: Northwest A & F University, 2015] 6 Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice [J]. Plant Physiol, 2006, 140 (2): 580-590 7 Chono M. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor [J]. Plant Physiol, 2003, 133 (3): 1209-1219 8 Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response [J]. Plant Physiol, 2000, 122 (1): 85-98 9 郝岭, 张钰石, 段留生, 张明才, 李召虎. 玉米ZmBRI1基因的克隆、表达及功能分析[J]. 作物学报, 2017, 43 (9): 1261-1271 [Hao L, Zhang YS, Duan LS, Zhang MC, Li ZH. Cloning, expression and functional analysis of brassinosteroid receptor gene (ZmBRI1) from Zea mays L. [J]. Acta Agron Sin, 2017, 43 (9): 1261-1271] 10 Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors [J]. Annu Rev Plant Biol, 2010, 61 (1): 681-704 11 Oh E, Zhu JY, Wang ZY. Interaction between BZR 1 and PIF 4 integrates brassinosteroid and environmental responses [J]. Nat Cell Biol, 2012, 14: 802-809 12 Liu Z, Zhang Y, Wang J, Li P, Zhao CZ, Chen YD, Bi YR. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings [J]. Plant Sci, 2015, 238: 64-72 13 Robert-Seilaniantz A, Maclean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JDG. The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates [J]. Plant J, 2011, 67 (2): 14 14 Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-Targeted SPL transcription factor [J]. Plant Cell, 2011, 23 (4): 1512-1522 15 Lin Y, Min J, Lai R, Wu Z, Chen Y, Yu L, Cheng C, Jin Y, Tian Q, Liu Q, Liu W, Zhang C, Lin L, Zhang D, Thu M, Zhang Z, Liu S, Zhong C, Fang X, Wang J, Yang H, Varshney RK, Yin Y, Lai Z. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics [J]. Gigascience, 2017, 6 (5): 1-14 16 Lin Y L, Lai ZX. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree [J]. Plant Sci, 2010, 178 (4): 359-365 17 Lin YL, Lin LX, Lai RL, Liu WH, Chen YK, Zhang ZH, Xu XH, and Lai ZX. MicroRNA 390-directedTAS 3 cleavage leads to the production of tasiRNA-ARF 3/4 during somatic embryogenesis in Dimocarpus longan Lour. [J]. Front Plant Sci, 2015, 6 (127): 1-15 18 Jaillais Y, Vert G. Brassinosteroid signaling and BRI1 dynamics went underground [J]. Curr Opin Plant Biol, 2016, 33: 92-100 19 Oh MH, Sun JD, Oh DH, Zielinski RE, Clouse SD, Huber SC. Enhancing Arabidopsis leaf growth by engineering the brassinosteroid insensitive1 receptor kinase [J]. Plant Physiol, 2011, 157 (1): 120-131 20 Oh MH, Clouse SD, Huber SC. Tyrosine phosphorylation in brassinosteroid signaling [J]. Plant Signal Behav, 2009, 4 (12): 1182-1185 21 严涵薇. 玉米及其近缘物种无内含子基因的数据库构建与进化研究[D]. 合肥: 安徽农业大学, 2014 [Yan HW. Database construction and evolutionary analysis of intronless genes in maize and related species [D]. Hefei: Anhui Agricultural University, 2014] 22 Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson LA, Chory J. Structural basis of steroid hormone perception by the receptor kinase BRI1 [J]. Nature, 2011, 474 (7352): 467-471 23 Iba?es M, Fàbregas N, Chory J, Ca?o-Delgado AL. Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles [J]. PNAS, 2010, 106 (7): 13630-13635 24 Fetcu D. Some properties of the hyper-framed manifolds [J]. Plant Cell, 2013, 25 (9): 3377-3388 25 Ceserani T, Trofka A, Gandotra N, Nelson T. VH1/BRL 2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation [J]. Plant J, 2009, 57 (6): 1000-1014 26 Fabregas N, Li N, Boeren S, Nash TE, Goshe MB, Clouse SD, Vries SD, Ca?o-Delgado AL. The brassinosteroid insensitive1-like 3 signalosome complex regulates Arabidopsis root development [J]. Plant Cell, 2013, 25 (9): 3377-3388 27 She J, Han Z, Kim TW, Wang JJ, Cheng W, Chang JB, Shi S, Wang JW, Wang ZY, Chai JJ. Structural insight into brassinosteroid perception by BRI1 [J]. Nature, 2012, 474 (7352): 472-476 28 Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM, Chory J. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor [J]. Genes Dev, 2011, 25 (3): 232-237 29 Kim TW, Guan S, Burlingame AL, Wang ZY. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2 [J]. Mol Cell, 2011, 43 (4): 561-571 30 Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling [J]. New Phytol, 2015, 206 (2): 522-540 31 Tang W, Yuan M, Wang R, Yang YH, Wang CM, Oses-Prieto JA, Kim TW, Zhou HW, Deng ZP, Gampala SS, Gendron JM, Jonassen EM, Lillo C, Delong A, Burlingame AL, Sun Y, Wang ZY. PP2A activates brassinosteroid-responsive gene? expression and plant growth by dephosphorylating? BZR1 [J]. Nat Cell Biol, 2011, 13 (2): 124-131 32 郑洁, 王磊. 油菜素内酯在植物生长发育中的作用机制研究进展[J]. 中国农业科技导报, 2014, 16 (1): 52-58 [Zheng J, Wang L. Advance in mechanism of brassinosteroids in plant development [J]. J Agric Sci Tech-Iran, 2014, 16 (1): 52-58] 33 耶兴元, 仝胜利, 张燕. 油菜素内酯对高温胁迫下猕猴桃苗耐热性相关生理指标的影响[J]. 西北农业学报, 2011, 20 (9): 113-116 [Ye XY, Tong SL, Zhang Y. Effects of brassinolide on physiological indicators related to thermo tolerance of kiwifruit seedlings under high temperature stress [J]. Acta Agric Bor-Occid Sin, 2011, 20 (9): 113-116] 34 Pashkovskiy PP, Kartashov AV, Zlobin IE, Pogosyan SL, Kuznetsov VV. Blue light alters miR167 expression and microRNA-targeted auxin response factor genes in Arabidopsis thaliana plants [J]. Plant Physiol Biochem, 2016, 104: 146-154 35 Li HS, Chen XH, Wang Y, Yao DH, Lin YL, Lai ZX. Exploration of the effect of blue light on microRNAs involved in the accumulation of functional metabolites of longan embryonic calli through RNA-sequencing [J]. J Sci Food Agric, 2018, 99: 1533-1547 36 Li HS, Lyu YM, Chen XH, Wang CQ, Yao DH, Ni SS, Lin YL, Chen YK, Zhang ZH, Lai ZX. Exploration of the effect of blue light on functional metabolite accumulation in longan embryonic calli via RNA sequencing [J]. Int J Mol Sci, 2019, 20 (2): 441 37 Wang Q, Zhu Z, Ozkardesh K, Lin CT. Phytochromes and phytohormones: the shrinking degree of separation [J]. Mol Plant, 2013, 6 (1): 5-7 38 Yang Z, Liu B, Su J, Liao JK, Lin CT, Oka Y. Cryptochromes orchestrate transcription regulation of diverse blue light responses in plants [J]. Photochem Photobiol, 2017, 93 (1): 112-127 39 刘忠娟. PIFs在糖调节植物生长代谢中的作用机理研究[D]. 兰州: 兰州大学, 2011 [Liu ZJ. Study on the meehanism of PIFs involved in sugar regulating plant growth and metabolism [D]. Lanzhou: Lanzhou university, 2011] 40 Luo XM, Lin WH, Zhu S, Zhu JY, Sun Y, Fan XY, Cheng ML, Hao YQ, Oh E, Tian MM, Liu LJ, Zhang M, Xie Q, Chong K, Wang ZY. Integration of light and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis [J]. Dev Cell, 2010, 19 (6): 872-883 41 Xi YU, Zhao H, Miao MA. Effect of hormone on content of total flavonoids in callus of Glycyrrhiza glabra L. [J]. J Shihezi Univ, 2011, 29 (4): 416-419 42 Luan LY, Zhang ZW, Xi ZM, Ma LN. Brassinosteroids regulate anthocyanin biosynthesis in the ripening of Grape berries [J]. S Afr J Enol Vitic, 2013, 34 (2): 196-203 43 Xu F, Gao X, Xi ZM, Zhang H, Peng XQ, Wang ZZ, Wang TM, Meng Y. Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera, ‘Cabernet Sauvignon’ berry skin [J]. Plant Growth Regul, 2015, 75 (3): 741-750 44 Xi ZM, Zhang ZW, Huo SS, Luan LY, Gao X, Ma LN, Fang YL. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity [J]. Food Chem, 2013, 141 (3): 3056-3065 45 Stephenson PG, Fankhauser C, Terry MJ. PIF3 is a repressor of chloroplast development [J]. PNAS, 2009, 106(18): 7654-7659 46 Min L, Zhang X. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton [J]. Plant Physiol, 2014, 164: 1293-1308
[1]邱栋梁,刘星辉,王湘平.模拟酸雨对龙眼叶绿体的伤害效应[J].应用与环境生物学报,2002,8(02):154.
QIU Dongliang,et al..Injury effects of simulated acid rain on chloroplasts of longan leaves[J].Chinese Journal of Applied & Environmental Biology,2002,8(01):154.
[2]邱栋梁,刘星辉,郭素枝.模拟酸雨对龙眼幼果纤维素酶活性和内源激素含量的影响[J].应用与环境生物学报,2004,10(01):35.
QIU Dongliang,et al..Effects of simulated acid rain on cellulase activity and contents of endogenous hormone in young fruit of longan[J].Chinese Journal of Applied & Environmental Biology,2004,10(01):35.
[3]林玉玲,赖钟雄.龙眼胚性愈伤组织Cu/Zn-SOD分子伴侣基因CCS的克隆及其在体胚发生过程中的表达分析[J].应用与环境生物学报,2012,18(03):351.[doi:10.3724/SP.J.1145.2012.00351]
LIN Yuling,LAI Zhongxiong.Cloning of Copper Chaperone for Superoxide Dismutase Gene CCS from Embryogenic Callus of Dimocarpus longan Lour. and Its Expression Analysis During Somatic Embryogenesis[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):351.[doi:10.3724/SP.J.1145.2012.00351]
[4]赖瑞联,林玉玲,赖钟雄.龙眼生长素受体基因TIR1的克隆及其与miR393互作关系[J].应用与环境生物学报,2016,22(01):95.[doi:10.3724/SP.J.1145.2015.05051]
LAI Ruilian,LIN Yuling & LAI Zhongxiong**.Cloning of auxin receptor gene TIR1 and its interaction with miR393 in Dimocarpus longan Lour.[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):95.[doi:10.3724/SP.J.1145.2015.05051]
[5]陈旭,曾友竞,王嘉毅,等.龙眼miR159家族成员进化特性及时空表达[J].应用与环境生物学报,2017,23(04):602.[doi:10.3724/SP.J.1145.2017.03011]
CHEN Xu,ZENG Youjing,WANG Jiayi,et al.Effect of main grain components on the starch swelling power of Tibetan hull-less barley (Hordeum vulgare var. nudum)[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):602.[doi:10.3724/SP.J.1145.2017.03011]
[6]王云,彭丽云,孙雪丽,等.龙眼Hsf基因家族全基因组鉴定及体胚发生过程中的表达分析[J].应用与环境生物学报,2019,25(02):420.[doi:10.19675/j.cnki.1006-687x.2018.06004]
WANG Yun,PENG Liyun,SUN Xueli,et al.Genome-wide identification of longan Hsf family members and their functional analysis during somatic embryogenesis in longan[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):420.[doi:10.19675/j.cnki.1006-687x.2018.06004]
[7]苏立遥,黄倏祺,蒋梦琦,等.龙眼miR403及其候选靶标对外源激素的响应模式以及在龙眼体胚中的表达模式[J].应用与环境生物学报,2019,25(04):977.[doi:10.19675/j.cnki.1006-687x.2019.03058]
SU Liyao,HUANG Shuqi,JIANG Mengqi,et al.The response patterns of miR403 and its candidate targets to exogenous hormones and their expression profiles in the longan somatic embryo[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):977.[doi:10.19675/j.cnki.1006-687x.2019.03058]
[8]刘蒲东,张舒婷,陈晓慧,等.龙眼GRF家族全基因组鉴定及表达模式[J].应用与环境生物学报,2020,26(02):236.[doi:10.19675/j.cnki.1006-687x.2019.06028]
LIU Pudong,ZHANG Shuting,CHEN Xiaohui,et al.Genomic identification and expression patterns of the longan GRF family[J].Chinese Journal of Applied & Environmental Biology,2020,26(01):236.[doi:10.19675/j.cnki.1006-687x.2019.06028]
[9]廖斌,徐小萍,李珊珊,等.苯丙氨酸和茉莉酸甲酯对龙眼胚性悬浮细胞柯里拉京积累的影响[J].应用与环境生物学报,2020,26(02):287.[doi:10.19675/j.cnki.1006-687x.2019.06001]
LIAO Bin,XU Xiaoping,LI Shanshan,et al.Effects of phenylalanine and methyl jasmonate on the growth and corilagin accumulation of embryogenic suspension cells in Dimocarpus longan Lour.[J].Chinese Journal of Applied & Environmental Biology,2020,26(01):287.[doi:10.19675/j.cnki.1006-687x.2019.06001]
[10]蒋梦琦,苏立遥,黄倏祺,等.龙眼miR156家族及其调控靶标SPL的生物信息学和表达模式[J].应用与环境生物学报,2020,26(03):558.[doi:10.19675/j.cnki.1006-687x.2019.07024]
JIANG Mengqi,SU Liyao,HUANG Shuqi,et al.Bioinformatics and expression pattern analysis of miR156 family and its regulatory target SPL in Dimocarpus longan[J].Chinese Journal of Applied & Environmental Biology,2020,26(01):558.[doi:10.19675/j.cnki.1006-687x.2019.07024]