|本期目录/Table of Contents|

[1]田晓龙,田思惠,张乾,等.三工河流域5种荒漠群落土壤有机碳动态[J].应用与环境生物学报,2020,26(03):658-666.[doi:10.19675/j.cnki.1006-687x.2019.07045]
 TIAN Xiaolong,TIAN Sihui,ZHANG Qian,et al.Soil organic carbon dynamics of five desert communities in Sangong River basin[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):658-666.[doi:10.19675/j.cnki.1006-687x.2019.07045]
点击复制

三工河流域5种荒漠群落土壤有机碳动态
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
658-666
栏目:
研究论文
出版日期:
2020-06-25

文章信息/Info

Title:
Soil organic carbon dynamics of five desert communities in Sangong River basin
作者:
田晓龙田思惠张乾汪依妮柳鑫金宝成赵学春
1贵州大学动物科学学院 贵阳 550025 2中国科学院植物研究所 北京 100093 3贵州省草地技术试验推广站 贵阳 550025
Author(s):
TIAN Xiaolong1 TIAN Sihui2 ZHANG Qian1 WANG Yini3 LIU Xin2 JIN Baocheng1 & ZHAO Xuechun1?
1College of Animal Science, Guizhou University, Guiyang 550025, China 2Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 3Guizhou Grassland Technology Test and Extension Station, Guiyang 550025, China
关键词:
荒漠群落土壤有机碳细根凋落物土壤因素
Keywords:
desert community soil organic carbon fine root litter soil factor
DOI:
10.19675/j.cnki.1006-687x.2019.07045
摘要:
土壤有机碳是土壤质量和健康的重要指标,其来源是根系和凋落物,了解土壤有机碳的分布格局及土壤有机碳密度、储量与细根、凋落物的关系,是深入理解荒漠生态系统碳循环过程的关键. 以新疆三工河流域的骆驼刺(Alhagi sparsifolia)、沙枣(Elaeagnus angustifolia)、多枝柽柳(Tamarix ramosissima)、芦苇(Phragmites australis)、梭梭(Haloxylon ammodendron)等5种荒漠群落为研究对象,采用连续土钻取样法和土柱法,研究土壤有机碳的密度、储量和细根、凋落物对土壤有机碳的补充. 结果表明,随着土层深度的增加,5个群落的土壤有机碳含量均呈逐渐降低的趋势,最大值均出现在0-5 cm土层;5个群落的土壤有机碳密度和0-100 cm土壤有机碳储量分别为3.19 kg/m2、306.87 g/m2,土壤有机碳的总储量为5.13 × 105 t. 5个群落的凋落物年产量为10.10-79.78 g/m2,通过分解每年补充的土壤有机碳为0.44-9.53 g/m2,占土壤有机碳储量的0.21%-3.94%. 5个群落的细根周转速率为1.41-1.98次/年,通过分解每年补充的土壤有机碳为6.31-44.12 g/m2,占土壤有机碳储量的2.25%-20.90%,是凋落物贡献的2.09-2.58倍. 可见,细根和凋落物对土壤有机碳库的积累起关键作用,细根较凋落物对土壤有机碳的贡献更大. (图8 表5 参38)
Abstract:
Soil organic carbon generated from plant root and litter is an important indicator of soil quality and soil health. The aims of this study were to understand the distribution pattern of soil organic carbon and the relationship of soil organic carbon between fine roots and plant litters from five desert communities in the Sangong River basin of China. The soil drill sampling method and sequential soil coring were used to investigate the distribution pattern of soil organic carbon and the effects of fine roots and litters on soil organic carbon in Alhagi sparsifolia, Elaeagnus angustifolia, Tamarix ramosissima, Phramites australis, and Haloxylon ammodendron communities. Results showed that soil organic carbon content decreased with soil depth, and the maximum values in all five communities appeared at a depth of 0-5 cm in the soil layer. The soil organic carbon density and stock at a depth of 0-100 cm for the five communities were 3.19 kg/m2 and 306.87 g/m2, respectively, and the total soil organic carbon storage was 5.13 × 105 tons. The annual litter production in the five communities was 10.10-79.78 g/m2. The annual replenishment of soil organic carbon through litter decomposition was 0.44-9.53 g/m2, accounting for 0.21%-3.94% of the soil organic carbon stock. The fine root turnover rate of the five communities was 1.41-1.98 times/yr, and soil organic carbon replenishment via decomposition was 6.31-44.12 g/m2, accounting for 2.25%-20.90% of the stock, which is 2.09-2.58 times more than litter contribution. This shows that fine roots and litters play a key role in the accumulation of soil organic carbon stock, and fine roots contribute more to this carbon than litter.

参考文献/References:

1 Johnston CA, Groffman P, Breshears DD, Cardon ZG, Currie W, Emanuel W, Gaudinski J, Jackson RB, Lajtha K, Nadelhoffer K, Jr DN, Post WM, Retallack G, Wielopolski L. Carbon cycling in soil [J]. Front Ecol Environ, 2004, 2 (10): 522-528
2 Lynch JM, Whipps JM. Substrate flow in the rhizosphere [J]. Plant Soil, 1990, 129: 1-10
3 Hertel D, Leuschner C. A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus-Quercusmixed forest [J]. Plant Soil, 2002, 239: 237-251
4 Fontaine S, Bardoux G, Abbadie L, Mariotti A. Carbon input to soil may decrease soil carbon content [J]. Ecol Lett, 2004, 7: 314-320
5 Zhou Y, Pei Z, Su J, Zhang J, Zheng Y, Ni J, Xiao C, Wang R. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a Saline-Alkaline arid region, northwestern China [J]. PLoS ONE, 2012, 7 (8): e42927
6 Zimmerman AR, Gao B, Ahn MY. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils [J]. Soil Biol Biochem, 2011, 43 (6): 1169-1179
7 于淑秋, 林学椿, 徐祥德. 我国西北地区近50年降水和温度的变化[J]. 气候与环境研究, 2003, 8 (1): 9-18 [Yu SQ, Lin XC, Xu XD. The climatic change in northwest China in recent 50 years [J]. Clim Environ Res, 2003, 8 (1): 9-18]
8 Lal R. Carbon sequestration in dryland ecosystems[J]. Environ Man, 2004, 33 (4): 528-544
9 Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermakerk LK, Seemann JR, Nowak RS. Elevated CO2 increases productivity and invasive species success in an arid ecosystem [J]. Nature, 2000, 408: 79-82
10 Xie JX, Li Y, Zhai CX, Li CH, Lan ZD. CO2 absorption by alkaline soils and its implication to the global carbon cycle [J]. Environ Geol, 2009, 56 (5): 953-961
11 Charley JL, West NE. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah [J]. J Ecol, 1975, 63 (3): 945-963
12 Zhang PP, Shao M. Spatial variability and stocks of soil organic carbon in the Gobi Desert of northwestern China [J]. PLoS ONE, 2014, 9 (4): e93584
13 Yang F, Huang LM, Yang RM, Yang F, Li DC, Zhao YG, Yang JL, Liu F, Zhang GL. Vertical distribution and storage of soil organic and inorganic carbon in a typical inland river basin, northwest China [J]. J Arid Land, 2018, 10 (2): 183-201
14 杨昊天, 王增如, 贾荣亮. 腾格里沙漠东南缘荒漠草地不同群落类型土壤有机碳分布及储量特征[J]. 植物生态学报, 2018, 42 (3): 288-296 [Yang HT, Wang ZR, Jia RL. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plant Ecol, 2018, 42 (3): 288-296]
15 田政, 吴秀芹, 谢芮, 黄宇. 内蒙古主要草地类型土壤有机碳密度对比[J]. 中国水土保持科学, 2014, 12 (4): 8-13 [Tian Z, Wu XQ, Xie R, Huang Y. Comparison of soil organic carbon density of main grassland types in Inner Mongolia [J]. Sci Soil Water Conserv, 2014, 12 (4): 8-13]
16 王永吉, 赵学春, 来利明, 朱林海, 王健健, 周继华, 姜联合, 马远见, 赵春强, 郑元润. 三工河流域梭梭群落细根生长动态及周转[J]. 生态与农村环境学报, 2013, 29 (5): 666-670 [Wang YJ, Zhao XC, Lai LM, Zhu LH, Zhou JH, Jiang LH, Ma YJ, Zhao CQ, Zheng YR. Growth dynamic and turnover of fine root of Haloxylon ammodendron communities in Sangong River basin [J]. J Ecol Rural Environ, 2013, 29 (5): 666-670]
17 王健健, 赵学春, 来利明, 朱林海, 王永吉, 周继华, 姜联合, 马远见, 赵春强, 郑元润. 新疆三工河流域柽柳群落细根生产与周转对土壤有机碳的贡献[J]. 林业科学研究, 2014, 27 (6): 809-814 [Wang JJ, Zhao XC, Lai LM, Zhu LH, Wang YJ, Zhou JH, Jiang LH, Ma YJ, Zhao CQ, Zheng YR. Contribution of fine root production and turnover to soil organic carbon in Tamarix ramosissima community in Sangong River basin of Xinjiang, China [J]. For Res, 2014, 27 (6): 809-814]
18 Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle [J]. Nature, 2014, 509: 600-603
19 Fahey TJ, Hughes JW, Pu M, Arthur MA. Root decomposition and nutrient flux following whole tree harvest of northern hardwood forest [J]. For Sci, 1988, 34 (3): 744-768
20 Batjes NH. Total carbon and nitrogen in the soils of the world [J]. Eur J Soil Sci, 1996, 65: 4-21
21 傅华, 陈亚明, 王彦荣, 万长贵. 阿拉善主要草地类型土壤有机碳特征及其影响因素[J]. 生态学报, 2004, 24 (3): 469-476 [Fu H, Chen YM, Wang YR, Wan CG. Organic carbon content in major grassland types in Alex, Inner Mongolia [J]. Acta Ecol Sin, 2004, 24 (3): 469-476]
22 裴智琴, 周勇, 郑元润, 肖春旺. 干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献[J]. 植物生态学报, 2011, 35 (11): 1182-1191 [Pei ZQ, Zhou Y, Zheng YR, Xiao CW. Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous Region, China [J]. Chin J Plant Ecol, 2011, 35 (11): 1182-1191]
23 Jobbagy EG, Sala OE. Controls of grass and shrub above-ground production in the Patagonian steppe [J]. Ecol Appl, 2000, 10 (2): 541-549
24 Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. A global analysis of root distributions for terrestrial biomes [J]. Oecol, 1996, 108 (3): 389-411
25 Persson HA. The distribution and productivity of fine roots in boreal forests [J]. Plant Soil, 1983, 71: 87-101
26 Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species [J]. Plant Soil, 1996, 187: 159-219
27 Kononova MM. Soil Organic Matter. Its Nature, Its role in Soil Formation and in Soil Fertility [M]. 2nd ed. Oxford: Pergamon Publications, 1961
28 Jackson RB, Schenk HJ, Jobbágy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT. Belowground consequences of vegetation change and their treatment in models [J]. Ecol Appl, 2000, 10 (2): 470-483
29 温丁, 何念鹏. 中国森林和草地凋落物现存量的空间分布格局及其控制因素[J]. 生态学报, 2016, 36 (10): 2876-2884 [Wen D, He NP. Spatial patterns of litter density and their controlling factors in forests and grasslands of China [J]. Acta Ecol Sin, 2016, 36 (10): 2876-2884]
30 赵学春, 来利明, 朱林海, 王健健, 王永吉, 周继华, 姜联合, 鲁洪斌, 赵春强, 郑元润. 三工河流域琵琶柴群落特征与土壤因子的相关分析[J]. 生态学报, 2014, 34 (4): 878-889 [Zhao XC, Lai LM, Zhu LH, Wang JJ, Wang YJ, Zhou JH, Jiang LH, Lu HB, Zhao CQ, Zheng YR. Correlation between characteristics of Reaumuria soongarica communities and soil factors in the Sangong River basin [J]. Acta Ecol Sin, 2014, 34 (4): 878-889]
31 Martínez-Yrízar A, Nú?ez S, Miranda H, Búrquez A. Temporal and spatial variation of litter production in Sonoran desert communities [J]. Plant Ecol, 1999, 145 (1): 37-48
32 田思惠, 柳鑫, 金宝成, 陈玉连, 汪依妮, 田晓龙, 赵学春. 三工河流域琵琶柴群落凋落物对土壤有机碳固定的影响[J]. 生态学报, 2019, 39 (14): 5339-5347 [Tian SH, Liu X, Jin BC, Chen YL, Wang YN, Tian XL, Zhao XC. Effects of litter on soil organic carbon fixation in Reaumuria soongorica communities in the Sangong River basin [J]. Acta Ecol Sin, 2019, 39 (14): 5339-5347]
33 Uselman SM, Qualls RG, Lilienfein J. Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil [J]. Soil Sci Soc Am J, 2007, 71 (5): 1555-1563
34 杨玉盛, 谢锦升, 王义祥, 刘艳丽, 岳永杰, 于占源. 杉木观光木混交林C库与C吸存[J]. 北京林业大学学报, 2003, 25 (5): 10-14 [Yang YS, Xie JS, Wang YX, Liu YL, Yue YJ, Yu ZY. Carbon stock and carbon sequestration in mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum [J]. J Beij For Univ, 2003, 25 (5): 10-14]
35 Matamala R. Impacts of fine root turnover on forest NPP and soil C sequestration potential [J]. Science, 2003, 302: 1385-1387
36 Jha P, Mohapatra KP. Leaf litterfall, fine root production and turnover in four major tree species of the semiarid region of India [J]. Plant Soil, 2010, 326: 481-491
37 赵学春, 来利明, 朱林海, 王健健, 王永吉, 周继华, 姜联合, 马远见, 赵春强, 郑元润. 三工河流域两种琵琶柴群落细根生物量、分解与周转[J]. 生态学报, 2014, 34 (15): 4295-4303 [Zhao XC, Lai LM, Zhu LH, Wang JJ, Wang YJ, Zhou JH, Jiang LH, Jiang LH, Zhao CQ, Zheng YR. Fine root biomass, decomposition and turnover of Reaumuria soongorica communities in the Sangong River basin [J]. Acta Ecol Sin, 2014, 34 (15): 4295-4303]
38 Vogt KA, Grier CC, Vogt DJ. Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests [J]. Adv Ecol Res, 1986, 15: 303-377

相似文献/References:

[1]段文霞,朱波,卢静惠,等.人工柳杉林碳蓄积量及土壤性质的动态变化[J].应用与环境生物学报,2007,13(06):777.
 DUAN Wenxia,et al..Dynamics of Carbon Storage and Soil Properties in Japanese Cedar (Cryptomeria fortunei) Plantations[J].Chinese Journal of Applied & Environmental Biology,2007,13(03):777.
[2]王长庭,龙瑞军,王启兰,等.三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化[J].应用与环境生物学报,2008,14(02):225.
 WANG Changting,et al..Changes in Soil Organic Carbon and Microbial Biomass Carbon at Different Degradation Successional Stages of Alpine Meadows in the Headwater Region of Three Rivers in China[J].Chinese Journal of Applied & Environmental Biology,2008,14(03):225.
[3]王俊华,胡君利,林先贵,等.耕作方式对潮土碳氮磷转化相关微生物学性状的影响[J].应用与环境生物学报,2013,19(05):868.[doi:10.3724/SP.J.1145.2013.00868]
 WANG Junhua,HU Junli,LIN Xiangui,et al.Effects of Tillage Mangement on Microbiological Characteristics Related to Transformation of Carbon, Nitrogen, and Phosphrous in Luvo-aquic Soil[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):868.[doi:10.3724/SP.J.1145.2013.00868]
[4]苏松锦,刘金福,马瑞丰,等.戴云山黄山松幼苗更新与土壤有机碳空间异质性的关系[J].应用与环境生物学报,2014,20(06):986.[doi:10.3724/SP.J.1145.2014.06026]
 SU Songjin,LIU Jinfu,MA Ruifeng,et al.Relationship between the spatial heterogeneity of soil organic carbon and Pinus taiwanensis regeneration seedlings[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):986.[doi:10.3724/SP.J.1145.2014.06026]
[5]郝广,闫勇智,李阳,等.不同刈割频次对呼伦贝尔羊草草原土壤碳氮变化的影响[J].应用与环境生物学报,2018,24(02):195.[doi:10.19675/j.cnki.1006-687x.2017.05001]
 HAO Guang,YAN Yongzhi,LI Yang,et al.Effects of different mowing frequencies on soil carbon and nitrogen changes in Leymus chinensis Steppe of Hulun Buir[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):195.[doi:10.19675/j.cnki.1006-687x.2017.05001]
[6]康成芳,宫渊波,车明轩,等.川西高寒山地灌丛草甸不同海拔土壤碳矿化特征[J].应用与环境生物学报,2019,25(05):1030.[doi:10.19675/j.cnki.1006-687x.2018.12044]
 KANG Chengfang,GONG Yuanbo**,CHEN Mingxuan,et al.Mineralization characteristics of alpine shrub meadow soil carbon at different elevations in western Sichuan[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):1030.[doi:10.19675/j.cnki.1006-687x.2018.12044]
[7]刘鑫铭 丁新新 郭汝凤 吴承祯** 林勇明 李键**.不同混交类型对毛竹林土壤有机碳和土壤呼吸的影响[J].应用与环境生物学报,2020,26(04):1.[doi:10.19675/j.cnki.1006-687x.2019.10023]
 LIU Xinming,DING Xinxin,GUO Rufeng,et al.Effects of different mixed types on soil organic carbon and soil respiration in Phyllostachys edulis J.Houz. Forest[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.10023]
[8]余杭 孙凡 李松阳 刘颖 贺静雯 林勇明** 王道杰 李键.不同区段金沙江下游山地失稳性坡面土壤有机碳含量特征[J].应用与环境生物学报,2020,26(06):1.[doi:10.19675/j.cnki.1006-687x.2019.09052]
 YU Hang,SUN Fan,LI Songyang,et al.Characteristics of soil organic carbon content in different sections of the unstable slopes of the mountainous area in the lower reaches of the Jinsha River[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.09052]

更新日期/Last Update: 2020-06-25