|本期目录/Table of Contents|

[1]马佳莹,汪冰寒,乔子茹,等.碳基材料对餐厨垃圾厌氧消化效率和微生物群落的影响研究进展[J].应用与环境生物学报,2020,26(03):730-738.[doi:10.19675/j.cnki.1006-687x.2019.07040]
 MA Jiaying,WANG Binghan,QIAO Ziru & XIE Bing.Effects of carbon-based materials on anaerobic digestion efficiency and microbial community of food waste[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):730-738.[doi:10.19675/j.cnki.1006-687x.2019.07040]
点击复制

碳基材料对餐厨垃圾厌氧消化效率和微生物群落的影响研究进展
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
730-738
栏目:
综述
出版日期:
2020-06-25

文章信息/Info

Title:
Effects of carbon-based materials on anaerobic digestion efficiency and microbial community of food waste
作者:
马佳莹汪冰寒乔子茹谢冰
华东师范大学生态与环境科学学院,上海城市生态过程与生态恢复重点实验室 上海 200241
Author(s):
MA Jiaying WANG Binghan QIAO Ziru & XIE Bing?
Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environment Science, East China Normal University, Shanghai 200241, China
关键词:
餐厨垃圾厌氧消化碳基材料甲烷产生微生物群落
Keywords:
food waste anaerobic digestion carbon-based material methane production microbial community
DOI:
10.19675/j.cnki.1006-687x.2019.07040
摘要:
餐厨垃圾厌氧消化是一种可回收再生能源的生物处理技术,目前运行中主要存在系统稳定性差和效率低等问题,添加碳基材料能够提高餐厨垃圾厌氧消化效率并对系统运行产生积极影响. 从甲烷产生和微生物群落变化两方面,综述碳基材料(生物炭、活性炭、碳布等)作为添加剂对餐厨垃圾厌氧消化系统的影响. 其主要影响机理为(1)厌氧消化系统稳定性;(2)种间直接电子传递(DIET);(3)微生物群落. 已有研究表明,碳基材料可促进餐厨垃圾厌氧消化产甲烷效率,提升甲烷产量1.1%-1 685%,缩短产甲烷迟滞期27.5%-95.7%. 此外,碳基材料添加会引起厌氧消化系统中细菌和古菌群落结构变化,碳基材料通过选择性地富集功能微生物,促进微生物间互营代谢,进而影响系统稳定性和产甲烷效率. 提出未来在餐厨垃圾厌氧消化的研究中,应着重关注碳基材料在连续运行系统中的分离与回收方法,优化不同厌氧消化条件下碳基材料的添加策略,通过代谢组学分析探究碳基材料对厌氧消化体系中微生物的作用机制. (图2 表2 参92)
Abstract:
Anaerobic digestion is a biological technique for food waste (FW) treatment, allowing the recovery of renewable energy, but there are problems of poor system stability and low efficiency at present. However, addition of carbon-based materials can enhance the efficiency of anaerobic digestion of food waste and can have a positive impact on system operation. This paper presents an overview of the effect of carbon-based materials (biochar, activated carbon, and carbon cloth) as additives in anaerobic digestion system of food waste, focusing on the changes in methane production and microbial communities. The main players are as follows: (i) stability of anaerobic digestion system; (ii) direct interspecies electron transfer (DIET); (iii) microbial community. Previous work reported that carbon-based materials can promote the efficiency of methane production through anaerobic digestion of food waste, with an increase in methane production by 1.1%-1 685%, and a decrease in methanogenic lag period by 27.5%-95.7%. Besides, carbon-based materials addition could modulate the community structure of bacteria and archaea in the anaerobic digestion system. Carbon-based materials are capable of promoting the syntrophic metabolism of microorganisms by selectively enriching functional microorganisms, thereby affecting system stability and methanogenic efficiency. It is therefore suggested that in the future research on anaerobic digestion of food waste, we should focus on the separation and recovery methods of carbon-based materials from the continuous operation systems. Also, the strategies implementing the addition of carbon-materials under different anaerobic digestion conditions should be optimized, and the mechanisms of action of carbon-based materials on microorganisms using metabolomics should be investigated.

参考文献/References:

1 王向会, 李广魏, 孟虹, 马琳, 赵国珏. 国内外餐厨垃圾处理状况概述[J]. 环境卫生工程, 2005, 13 (2): 41-43 [Wang XH, Li GW, Meng H, Ma L, Zhao GJ. Discussion on treatment status of food residue [J]. Environ Sanit Eng, 2005, 13 (2): 41-43]
2 Zhang JY, Lv C, Tong J, Liu JW, Liu JB, Yu DW, Wang YW, Chen MX, Wei YS. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment [J]. Bior Technol, 2016, 200: 253-261
3 饶玲华. 餐厨垃圾厌氧发酵产沼气规律研究[D]. 长沙: 中南大学, 2011 [Rao LH. Study on the biogas production from kitchen waste by anaerobic digestion [D]. Changsha: Central South University, 2011]
4 Li L, Peng XY, Wang XM, Wu D. Anaerobic digestion of food waste: a review focusing on process stability [J]. Bioresour Technol, 2018, 248: 20-28
5 Yin CH, Dong X, Lv L, Wang ZG, Xu QQ, Liu XL, Yan H. Economic production of probiotics from kitchen waste [J]. Food Sci Biotechnol, 2013, 22 (S1): 59-63
6 Zhen GY, Lu XQ, Kobayashi T, Kumar G, Xu KQ. Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: kinetic modeling and synergistic impact evaluation [J]. Chem Eng J, 2016, 299: 332-341
7 Kim JA, Kim JS, Lee CS. Anaerobic co-digestion of food waste, human feces, and toilet paper: methane potential and synergistic effect [J]. Fuel, 2019, 248: 189-195
8 Wang GJ, Li Q, Gao X, Wang XC. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms [J]. Bioresour Technol, 2018, 250: 812-820
9 Braguglia C, Gallipoli A, Gianico A, Pagliaccia P. Anaerobic bioconversion of food waste into energy: a critical review [J]. Bioresour Technol, 2018, 248: 37-56
10 De Clercq D, Wen ZG, Fan F, Caicedo L. Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: a case study in Beijing [J]. Renew Sust Energ Rev, 2016, 59: 1676-1685
11 Ye M, Liu JY, Ma CN, Li YY, Zou LP, Qian GR, Xu ZP. Improving the stability and efficiency of anaerobic digestion of food waste using additives: a critical review [J]. J Clean Prod, 2018, 192: 316-326
12 Zamanzadeh M, Hagen Li, Svensson K, Linjordet R, Horn S. Anaerobic digestion of food waste–effect of recirculation and temperature on performance and microbiology [J]. Water Res, 2016, 96: 246-254
13 Li YY, Jin YY, Li JH, Li HL, Yu ZX, Nie YF. Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion [J]. Energy, 2017, 118: 377-386
14 Xiao XL, Huang ZX, Ruan WQ, Yan LT, Miao HF, Ren HY, Zhao MX. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor [J]. Bioresour Technol, 2015, 193: 234-242
15 孙娟, 李东, 郑涛, 刘晓风, 陈琳, 何明阳. 微量元素对蔬菜废弃物连续厌氧消化系统微生物群落结构的影响[J]. 应用与环境生物学报, 2019, 25 (1): 156-163 [Sun J, Li D, Zheng T, Liu XF, Chen L, He MY. Effects of trace elements on microbial community structure in continuous anaerobic digestion of vegetable waste [J]. Chin J Appl Environ Biol, 2019, 25 (1): 156-163]
16 Martins G, Salvador AF, Pereira L, Alves MM. Methane production and conductive materials: a critical review [J]. Environ Sci Technol, 2018, 52 (18): 10241-10253
17 Zhao ZQ, Zhang YB, Woodard TL, Nevin KP, Lovley DR. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials [J]. Bior Technol, 2015, 191: 140-145
18 常亚洲, 王朋, 李浩, 徐其静, 梁妮. 碳基材料对有机污染物环境行为的影响研究进展[J]. 环境化学, 2018, 37 (10): 2103-2112 [Chang YZ, Wang P, Li H, Xu QJ, Liang N. Effects of carbonaceous materials on the environmental behavior of organic pollutants: a review [J]. Environ Chem, 2018, 37 (10): 2103-2112]
19 Bertin L, Lampis S, Todaro D, Scoma A, Vallini G, Marchetti L, Majone M, Fava F. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon [J]. Water Res, 2010, 44 (15): 4537-4549
20 Sohi SP, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil [J]. Adv Agron, 2010, 105: 48-82
21 Zheng H, Wang ZY, Deng X, Zhao J, Luo Y, Novak Jeff, Herbert S, Xing BS. Characteristics and nutrient values of biochars produced from giant reed at different temperatures [J]. Bioresour Technol, 2013, 130: 463-471
22 Schulz H, Glaser B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment [J]. J Plant Nutr Soil Sci, 2012, 175 (3): 410-422
23 Codignole LF, Cordiner S, Manni A, Mulone V, Rocco V. Biochar characteristics and early applications in anaerobic digestion-a review [J]. J Environ Chem Eng, 2018, 6 (2): 2892-2909
24 马帅. 生物炭促进餐厨垃圾厌氧消化产气性能的研究[D]. 武汉: 华中科技大学, 2018 [Ma S. Study on biochar promoting anaerobic digestion of gas production from kitchen waste [D]. Wuhan: Huazhong University of Science and Technology, 2018]
25 Chen SS, Rotaru AE, Shrestha PM, Malvankar NS, Liu FH, Fan W, Nevin KP, Lovley DR. Promoting interspecies electron transfer with biochar [J]. Scient Rep, 2015, 4 (1): 5019
26 Medilanski E, Kaufmann K, Wick LY, Wanner O, Harms H. Influence of the surface topography of stainless steel on bacterial adhesion [J]. Biof, 2002, 18 (3): 193-203
27 Habouzit F, Gévaudan G, Hamelin J, Steyer JP, Bernet N. Influence of support material properties on the potential selection of Archaea during initial adhesion of a methanogenic consortium [J]. Bioresour Technol, 2011, 102 (5): 4054-4060
28 Xu SY, He CQ, Luo LW, Lü F, He PJ, Cui LF. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester [J]. Bioresour Technol, 2015, 196: 606-612
29 Luz FC, Cordiner S, Manni Al, Mulone V, Rocco V, Braglia R, Canini A. Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: evaluation of the biogas yield [J]. Energy, 2018, 161: 663-669
30 Cai J, He PJ, Wang Y, Shao LM, Lü F. Effects and optimization of the use of biochar in anaerobic digestion of food wastes [J]. Waste Manag Res, 2016, 34 (5): 409-416
31 Wang GJ, Li Q, Dzakpasu M, Gao X, Yuwen CS, Wang XC. Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge [J]. Waste Manage, 2018, 80: 73-80
32 Ko JH, Wang N, Yuan TG, Lü F, He PJ, Xu QY. Effect of nickel-containing activated carbon on food waste anaerobic digestion [J]. Bioresour Technol, 2018, 266: 516-523
33 Lin RC, Cheng J, Zhang JB, Zhou JH, Cen KF, Murphy JD. Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion [J]. Bioresour Technol, 2017, 239: 345-352
34 Lin RC, Cheng J, Ding LK, Murphy JD. Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges [J]. Chem Engin J, 2018, 350: 681-691
35 Fujinawa K, Nagoya M, Kouzuma A, Watanabe K. Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells [J]. Appl Microbiol Biotechnol, 2019, 103 (15): 6385-6392
36 Pasquini LM, Hashmi SM, Sommer TJ, Elimelech M, Zimmerman JB. Impact of surface functionalization on bacterial cytotoxicity of Single-walled carbon nanotubes [J]. Environ Sci Technol, 2012, 46 (11): 6297-6305
37 Zhang JS, Zhao WQ, Zhang HW, Wang ZJ, Fan CF, Zang LH. Recent achievements in enhancing anaerobic digestion with carbon-based functional materials [J]. Bioresour Technol, 2018, 266: 555-567
38 Fisgativa H, Tremier A, Dabert P. Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion [J]. Waste Manage, 2016, 50: 264-274
39 Zhang CS, Su HJ, Baeyens J, Tan TW. Reviewing the anaerobic digestion of food waste for biogas production [J]. Renew Sust Energy Rev, 2014, 38: 383-392
40 Sen B, Aravind J, Kanmani P, Lay CH. State of the art and future concept of food waste fermentation to bioenergy [J]. Renew Sust Energy Rev, 2016, 53: 547-557
41 Qiao W, Takayanagi K, Shofie M, Niu QG, Yu HQ, Li YY. Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: system amendments and membrane performance [J]. Bior Technol, 2013, 150: 249-258
42 Li Q, Qiao W, Wang XC, Takayanagi K, Shofie M, Li YY. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge [J]. Waste Manage, 2015, 36: 77-85
43 Wang D, Ai J, Shen F, Yang G, Zhang YZ, Deng SH, Zhang J, Zeng YM, Song C. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost [J]. Bioresour Technol, 2017, 227: 286-296
44 Yuan JH, Xu RK, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures [J]. Bioresour Technol, 2011, 102 (3): 3488-3497
45 Shen YW, Linville JL, Ignacio-De LPAA, Schoene RP, Urgun-Demirtas M. Towards a sustainable paradigm of waste-to-energy process: enhanced anaerobic digestion of sludge with woody biochar [J]. J Clean Prod, 2016, 135: 1054-1064
46 Zhao ZQ, Zhang YB, Li Y, Dang Y, Zhu TT, Quan X. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth [J]. Chem Eng J, 2017, 313: 10-18
47 Rajagopal R, Massé DI, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia [J]. Bioresour Technol, 2013, 143: 632-641
48 Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: a review [J]. Proc Biochem, 2013, 48 (5-6): 901-911
49 Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review [J]. Bioresour Technol, 2008, 99 (10): 4044-4064
50 Lü F, Luo CH, Shao LM, He PJ. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina [J]. Water Res, 2016, 90: 34-43
51 Mumme J, Srocke F, Heeg K, Werner M. Use of biochars in anaerobic digestion [J]. Bioresour Technol, 2014, 164: 189-197
52 Sasaki K, Morita M, Hirano SI, Ohmura N, Igarashi Y. Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles [J]. Appl Microbiol Biotechnol, 2011, 90 (4): 1555-1561
53 Sawayama S, Tada C, Tsukahara K, Yagishita T. Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion [J]. J Biosci Bioengin, 2004, 97 (1): 65-70
54 Ryue J, Lin L, Liu Y, Lu WJ, Mccartney D, Dhar BR. Comparative effects of GAC addition on methane productivity and microbial community in mesophilic and thermophilic anaerobic digestion of food waste [J]. Biochem Eng J, 2019, 146: 79-87
55 Yang YF, Zhang YB, Li ZY, Zhao ZQ, Quan X, Zhao ZS. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition [J]. J Clean Prod, 2017, 149: 1101-1108
56 Mcinerney MJ, Sieber JR, Gunsalus RP. Syntrophy in anaerobic global carbon cycles [J]. Curr Opin Biotechnol, 2009 (20): 623-632
57 Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiol Molec Biol Rev, 1997, 61 (2): 262-280
58 冯雪梅. 导电矿物材料对乙酸钠厌氧产甲烷的影响[D]. 合肥: 合肥工业大学, 2015 [Feng XM. Effect of conductive mineral materials on anaerobic methanogenic process of sodium acetate [D]. Hefei: Hefei University of Technology, 2015]
59 Shrestha PM, Rotaru AE. Plugging in or going wireless: strategies for interspecies electron transfer [J]. Front Microbiol, 2014, 5: 1-8
60 Cruz VC, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation [J]. Environ Sci Technol, 2014, 48 (13): 7536-7543
61 Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria [J]. Science, 2010, 330 (6009): 1413-1415
62 Rotaru AE, Shrestha PM, Liu FH, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane [J]. Energy Environ Sci, 2014, 7 (1): 408-415
63 Rotaru AE, Shrestha PM, Liu FH, Markovaite B, Chen SS, Nevin KP, Lovley DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri [J]. Appl Environ Microbiol, 2014, 80 (15): 4599-4605
64 Liu FH, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Promoting direct interspecies electron transfer with activated carbon [J]. Energy Environ Sci, 2012, 5 (10):
65 Lee JY, Lee SH, Park HD. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors [J]. Bior Technol, 2016, 205: 205-212
66 Li Q, Xu MJ, Wang GJ, Chen R, Qiao W, Wang XC. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment [J]. Bioresour Technol, 2018, 249: 1009-1016
67 Capson-Tojo G, Moscoviz R, Ruiz D, Santa-Catalina G, Trably E, Rouez M, Crest M, Steyer JP, Bernet N, Delgenès JP, Escudié R. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste [J]. Bioresour Technol, 2018, 260: 157-168
68 Han W, Liu DN, Shi YW, Tang JH, Li YF, Ren NQ. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors [J]. Bioresour Technol, 2015, 180: 54-58
69 Sunyoto NMS, Zhu MM, Zhang ZZ, Zhang DK. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste [J]. Bioresour Technol, 2016, 219: 29-36
70 Cooney MJ, Lewis K, Harris K, Zhang Q, Yan T. Start up performance of biochar packed bed anaerobic digesters [J]. J Water Proc Eng, 2016, 9: 7-13
71 Fagbohungbe MO, Herbert BMJ, Hurst L, Li H, Usmani SQ, Semple KT. Impact of biochar on the anaerobic digestion of citrus peel waste [J]. Bioresour Technol, 2016, 216: 142-149
72 石笑羽, 王宁, 陈钦冬, 吴华南, 徐期勇. 生物炭加速餐厨垃圾厌氧消化的机理[J]. 环境工程学报, 2018, 12 (11): 3204-3212 [Shi XY, Wang N, Chen QD, Wu HN, Xu QY. Mechanisms for enhancement of biogas generation from food waste anaerobic digestion with biochar supplement [J]. Chin J Environ Eng, 2018, 12 (11): 3204-3212]
73 Salvador AF, Martins G, Melle-Franco M, Serpa R, Stams AlJM, Cavaleiro AJ, Pereira MA, Alves MM. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture [J]. Environ Microbiol, 2017, 19 (7): 2727-2739
74 Hirano S, Matsumoto N, Morita M, Sasaki K, Ohmura N. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus [J]. Lett Appl Microbiol, 2013, 56 (5): 315-321
75 李坚, 汤佳. 庄莉, 许杰龙. 导电性生物炭促进Geobacter和Methanosarcina共培养体系互营产甲烷过程[J]. 生态环境学报. 2018, 27 (7): 1260-1268 [Li J, Tang J, Zhang L, Xu JL. Conductive biochar stimulates acetate conversion to methane by syntrophic interaction between Geobacter and Methanosarcina [J]. Ecol Environ Sci, 27 (7): 1260-1268]
76 Zhang S, Chang JL, Lin C, Pan YR, Cui KP, Zhang XY, Liang P, Huang X. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon [J]. Bioresour Technol, 2017, 245: 132-137
77 Shen YW, Linville JL, Urgun-Demirtas M, Schoene RP, Snyder SW. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal [J]. Appl Energy, 2015, 158: 300-309
78 Lei YQ, Sun DZ, Dang Y, Chen HM, Zhao ZQ, Zhang YB, Holmes DE. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth [J]. Bioresour Technol, 2016, 222: 270-276
79 Yan WW, Shen N, Xiao YY, Chen Y, Sun FQ, Kumar TV, Zhou Y. The role of conductive materials in the start-up period of thermophilic anaerobic system [J]. Bioresour Technol, 2017, 239: 336-344
80 Zhang L, Zhang JX, Loh KC. Activated carbon enhanced anaerobic digestion of food waste–laboratory-scale and pilot-scale operation [J]. Waste Manage, 2018, 75: 270-279
81 Zhang JX, Zhang YB, Quan X, Chen S. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)–anaerobic reactor [J]. Water Res, 2013, 47 (15): 5719-5728
82 Lin L, Yu ZT, Li YB. Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum–Part II: microbial diversity and succession [J]. Bior Technol, 2017, 241: 1027-1035
83 Park JH, Park JH, Je SH, Sul WJ, Jin KH, Park HD. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon [J]. Bioresour Technol. 2018, 259: 414-422
84 Krakat N, Schmidt S, Scherer P. Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage [J]. Bioresour Technol, 2011, 102 (10): 5692-5701
85 Xia Y, Wang YB, Wang Y, Chin FYL, Zhang T. Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation [J]. Biotechnol Biofuels, 2016, 9: 111
86 Dang Y, Holmes DE, Zhao ZQ, Woodard TL, Zhang YB, Sun DZ, Wang LY, Nevin KP, Lovley DR. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials [J]. Bioresour Technol, 2016, 220: 516-522
87 Masahiko M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates [J]. mBio, 2011, 2 (4): e00159-11
88 Zhang L, Loh KC. Synergistic effect of activated carbon and encapsulated trace element additive on methane production from anaerobic digestion of food wastes-enhanced operation stability and balanced trace nutrition [J]. Bioresour Technol, 2019, 278: 108-115
89 Li L, He QM, Wei YM, He Q, Peng XY. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste [J]. Bioresour Technol, 2014, 171: 491-494
90 Boe K, Batstone DJ, Steyer JP, Angelidaki I. State indicators for monitoring the anaerobic digestion process [J]. Water Res, 2010, 44 (20): 5973-5980
91 Zhang JX, Mao FJ, Loh KC, Gin KYH, Dai YJ, Tong YW. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes [J]. Bioresour Technol, 2018, 249: 729-736
92 Dang Y, Sun DZ, Woodard TL, Wang LY, Nevin KP, Holmes DE. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials [J]. Bioresour Technol, 2017, 238: 30-38

相似文献/References:

[1]沈东升,徐向阳,冯孝善.进水PCP和CODCr质量浓度对厌氧反应器运行效能的影响[J].应用与环境生物学报,1997,3(04):375.
 Shen Dongsheng,Xu Xiangyang,Feng Xiaoshan.EFFECT OF PCP & CODcr MASS CONCENTRATIONS IN INFLUENT ON OPERATIONAL BEHAVIORS OF ANAEROBIC REACTORS[J].Chinese Journal of Applied & Environmental Biology,1997,3(03):375.
[2]向元英,杨暖,孙霞,等.单室微生物电解池强化混合脂肪酸产甲烷*[J].应用与环境生物学报,2016,22(05):872.[doi:10.3724/SP.J.1145.2015.12009]
 XIANG Yuanying,YANG Nuan,et al.Enhanced methane production from SCFAs wastewater using single-chamber microbial electrolysis cell*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):872.[doi:10.3724/SP.J.1145.2015.12009]
[3]江承亮,腾昌运,李敬,等.蝇蛆生物转化餐厨垃圾的效能评估[J].应用与环境生物学报,2017,23(06):1159.[doi:10.3724/SP.J.1145.2017.03018]
 JIANG Chengliang,TENG Changyun,LI Jin,et al.The effectiveness of bioconversion of food waste by housefly larvae[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):1159.[doi:10.3724/SP.J.1145.2017.03018]
[4]谭泽文,郜晨,张逸凡,等.甲基营养型芽孢杆菌的分离鉴定及在防蝇产蛆环境防治中的应用[J].应用与环境生物学报,2018,24(03):631.[doi:10.19675/j.cnki.1006-687x.2017.02014]
 TAN Zewen,GAO Chen,ZHANG Yifan,et al.Identification of Bacillus methylotrophicus and its application in preventing fly maggot production in the environment[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):631.[doi:10.19675/j.cnki.1006-687x.2017.02014]
[5]孙娟,李东,郑涛,等.微量元素对蔬菜废弃物连续厌氧消化系统微生物群落结构的影响[J].应用与环境生物学报,2019,25(01):156.[doi:10.19675/j.cnki.1006-687x.2018.03035]
 SUN Juan,LI Dong**,ZHENG Tao**,et al.Effects of trace elements on microbial community structure in continuous anaerobic digestion of vegetable waste[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):156.[doi:10.19675/j.cnki.1006-687x.2018.03035]
[6]乔子茹,魏华炜,马佳莹,等.餐厨垃圾生物处理过程中VOCs的产生与控制研究进展[J].应用与环境生物学报,2020,26(01):210.[doi:10.19675/j.cnki.1006-687x.2019.04018]
 QIAO Ziru,WEI Huawei,MA Jiaying,et al.Review of the generation of volatile organic compounds during the bio-treatment process of food waste[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):210.[doi:10.19675/j.cnki.1006-687x.2019.04018]
[7]聂宇,陈娅婷,孙照勇,等.污水/城市污泥中抗生素对厌氧消化的影响研究进展[J].应用与环境生物学报,2020,26(02):479.[doi:10.19675/j.cnki.1006-687x.2019.05001]
 NIE Yu,CHEN Yating,SUN Zhaoyong,et al.Research progress on the effects of antibiotics on anaerobic digestion in sewage and municipal sludge[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):479.[doi:10.19675/j.cnki.1006-687x.2019.05001]
[8]石娟 周攀 陈意超 刘晓风 李东**.一株耐盐嗜热菌Aneurinibacillus thermoaerophilus H7的分离及其油脂降解特性[J].应用与环境生物学报,2020,26(06):1.[doi:10.19675/j.cnki.1006-687x.2019.12055]
 SHI Juan,ZHOU Pan,CHEN Yichao,et al.Isolation and oil degrading characterization of a halotolerant thermophile Aneurinibacillus thermoaerophilu H7[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.12055]
[9]蒋心茹 姬高升 刘杨 房俊楠 许力山 谢炎东 闫志英**.[综 述] 市政污泥胞外聚合物(EPS)的形成过程与解聚方法研究进展[J].应用与环境生物学报,2020,26(06):1.[doi:10.19675/j.cnki.1006-687x.2019.10014]
 JIANG Xinru,,et al.Overview of extracellular polymeric substance (EPS) generation and disaggregation in municipal sewage sludge[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.10014]
[10]安彤 吴宗林 庞悦 孙照勇 苟敏**.【综 述】导电材料强化挥发性脂肪酸互营氧化产甲烷菌群的种间直接电子传递研究进展[J].应用与环境生物学报,2021,27(03):1.[doi:10.19675/j.cnki.1006-687x.2020.06009]
 AN Tong,WU Zonglin,PANG Yue,et al.A review of direct interspecies electron transfer strengthened by conductive materials between syntrophic methanogenesis communit ies of volatile fatty acids[J].Chinese Journal of Applied & Environmental Biology,2021,27(03):1.[doi:10.19675/j.cnki.1006-687x.2020.06009]

更新日期/Last Update: 2020-06-25