|本期目录/Table of Contents|

[1]赛闹汪青,曹佳鑫,庞海龙,等.多壁碳纳米管对水稻幼苗的生理学效应及对1,2,4-三氯苯毒性的缓解[J].应用与环境生物学报,2020,26(03):534-542.[doi:10.19675/j.cnki.1006-687x.2019.07037]
 SAINAO Wangqing,CAO Jiaxin,PANG Hailong,et al.Multi-walled carbon nanotubes: their effects on the physiological responses of Oryza sativa L. seedlings and the toxicity of trichlorobenzene[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):534-542.[doi:10.19675/j.cnki.1006-687x.2019.07037]
点击复制

多壁碳纳米管对水稻幼苗的生理学效应及对1,2,4-三氯苯毒性的缓解
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
534-542
栏目:
研究论文
出版日期:
2020-06-25

文章信息/Info

Title:
Multi-walled carbon nanotubes: their effects on the physiological responses of Oryza sativa L. seedlings and the toxicity of trichlorobenzene
作者:
赛闹汪青曹佳鑫庞海龙石珍珍冯汉青
西北师范大学生命科学学院 兰州 730070
Author(s):
SAINAO Wangqing CAO Jiaxin PANG Hailong SHI Zhenzhen & FENG Hanqing?
College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
关键词:
多壁碳纳米管水稻幼苗124-三氯苯氧化胁迫叶绿素荧光
Keywords:
multi-walled carbon nanotube Oryza sativa L. seedling 124-trichlorobenzene oxidative stress chlorophyll fluorescence
DOI:
10.19675/j.cnki.1006-687x.2019.07037
摘要:
研究多壁碳纳米管(multi-walled carbon nanotubes,MWCNTs;1 g/L)对水稻幼苗生理学反应的影响是否具粒子尺寸依赖效应,并在受试外径范围内筛选出对水稻幼苗生理学反应无不良影响的MWCNTs,探究其在培养基质中的存在能否有效缓解1,2,4-三氯苯(TCB)对水稻幼苗的生理学胁迫作用. 结果显示:将水稻幼苗暴露于不同外径MWCNTs(< 8 nm,20-30 nm,> 50 nm)的悬浮液中培养 10 d后,与对照相比,< 8 nm 或20-30 nm MWCNTs处理抑制了水稻幼苗的生长,降低了根系可溶性糖和可溶性蛋白含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和抗坏血酸过氧化物酶(APX)活性,以及叶片光系统 II(PS II)光化学活性和叶绿素含量;而根系超氧阴离子(O2.-)积累量和过氧化氢酶(CAT)活性则上升. 相较< 8 nm MWCNTs处理,20-30 nm MWCNTs处理对幼苗上述不良影响有所减轻. 然而,> 50 nm MWCNTs处理则显著优化了幼苗的生长,维持了根系活性氧(reactive oxygen species,ROS)代谢平衡,并且提高了根系可溶性糖和可溶性蛋白含量,以及叶片PS II光化学活性和叶绿素含量. 非TCB处理条件下,添加外源MWCNTs(> 50 nm,1g/L)显著提高了根系可溶性糖含量、叶片PS II光化学活性和叶绿素含量;与单独TCB(40 mg/L)处理相比,TCB(40 mg/L)+ MWCNTs(> 50 nm,1 g/L)复合处理显著缓解了TCB对水稻幼苗的生理学胁迫作用. 上述结果表明,MWCNTs对水稻幼苗的生理效应具有粒子尺寸依赖性,且外径> 50 nm的MWCNTs在培养基质中的存在能够显著缓解TCB对水稻幼苗的生理学胁迫作用. (图5 表4 参33)
Abstract:
In this study, we investigate whether multi-walled carbon nanotubes (MWCNTs; 1 g/L) have a particle size-dependent effect on the physiological responses of Oryza sativa L. seedlings. We also investigated the alleviative effects of MWCNTs (those found to have no adverse effects on the physiological responses of O. sativa seedlings in initial testing) on 1,2,4-trichlorobenzene (TCB) toxicity. Initially, MWCNTs with two different outer-diameters (< 8 nm and 20-30 nm; 1g /L) were applied to the roots of O. sativa seedlings grown for 10 d under hydroponic conditions. Results showed that, compared to controls, such application inhibited seedling growth, and decreased the soluble protein and soluble sugar content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, and ascorbate peroxidase (APX ) activity of roots. Additionally, such treatment also resulted in reduced leaf PS II photochemistry activity and chlorophyll content. Conversely, the root superoxide anion (O2·-) production rate and catalase (CAT) activity were increased under this treatment. However, the adverse physiological effects to O. sativa seedlings were alleviated with treatment using 20-30 nm MWCNTs, in contrast to treatment with < 8 nm MWCNTs. Importantly, MWCNTs with an outer-diameter of < 50 nm presented in medium effectively enhanced seedling growth, maintained the ROS (reactive oxygen species) metabolism balance of roots, increased the soluble protein and sugar content of roots, improved PS II photochemistry activity, and increased chlorophyll content of leaves. We further investigated the alleviative effects of MWCNTs with outer-diameter > 50 nm on the toxicity of TCB in O. sativa seedlings. Without TCB stress, MWCNTs presented in medium increased the root soluble sugar content, leaf PS II photochemistry activity, and chlorophyll content. With TCB stress, MWCNTs presented in medium significantly alleviated the TCB-induced negative physiological effects. These results suggest that MWCNTs with moderately sized outer-diameters can be an advantageous additive during the growth of O. sativa seedlings and can protect them from TCB toxicity.

参考文献/References:

1 郭敏, 龚继来, 曾光明. 多壁碳纳米管对水稻幼苗的植物毒性研究[J]. 生态毒理学报, 2016, 11 (5): 94-102 [Guo M, Gong JL, Zeng GM. Comprehensive phytotoxicity assessment of multi-wall carbon nanotubes on rice seedlings [J]. Asian J Ecotoxicol, 2016, 11 (5): 94-102]
2 Dahlben LJ, Eckelman MJ, Hakimian A, Somu S, Isaacs JA. Environmental life cycle assessment of a carbon nanotube-enabled semiconductor device [J]. Environ Sci Technol, 2013, 47 (15): 8471-8478
3 Tan XM, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells [J]. Carbon, 2009, 47 (1): 3479-3487
4 Beguma P, Ikhtiari R, Fugetsua B, Matsuoka M, Akasaka T, Watari F. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage [J]. Appl Surf Sci, 2012, 262: 120-124
5 Wang XP, Han HY, Liu XQ, Gu XX, Chen K, Lu DL. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum ) plants [J]. J Nanopart Res, 2012, 14 (6): 841-851
6 罗春燕. 功能化多壁碳纳米管对水稻发芽及苗期生理生化特性的影响研究[D]. 雅安: 四川农业大学, 2016 [Luo CY. Effects of functionalized multiwalled carbon nanotubes on seed germination and physiological and biochemical characteristics of rice seedlings [D]. Ya′an: Sichuan Agricultural University, 2016]
7 Machado FM, Bergmann CP, Lima EC, Adebayo MA, Fagan SB. Adsorption of a textile dye from aqueous solutions by carbon nanotubes [J]. Mater Res, 2014, 17 (1): 153-160
8 Lu C, Chung YL, Chang KF. Adsorption of trihalomethanes from water with carbon nanotubes [J]. Water Res, 2005, 39 (6): 1183-1189
9 Li YH, Wang SG, Cao AY, Zhao D, Zhang XF, Xu CL, Luan ZK, Ruan DB, Liang J, Wu DH, Wei BQ. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes [J]. Chem Phys Lett, 2001, 350 (5): 412-416
10 Li Y H, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ. Lead adsorption on carbon nanotubes [J]. Chem Phys Lett, 2002, 357 (3): 263-266
11 Peng XJ, Luan ZK, Ding J, Di ZC, Li YH, Tian BH. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water [J]. Mater Lett 2005, 59 (4): 399- 403
12 刘宛, 孙铁珩, 李培军, 周启星, 梁文举, 台培东, 许华夏, 张海荣. 1,2,4-三氯苯胁迫对萌发大豆种子中活性氧的影响[J]. 应用生态学报, 2002, 13 (12): 1655-1658 [Liu W, Sun TX, Li PJ, Zhou QX, Liang WJ, Tai PD, Xu HX, Zhang HR. Effects of 1, 2,4-trichlorobenzene stress on active oxygen in germinated soybean seeds [J]. Chin J Appl Ecol, 2002, 13 (12): 1655-1658]
13 Zhang B, Chu G, Wei C, Zhang B, Chu G, Wei C, Ye J, Lei B, Li Z, Liang Y. Physiological and biochemical response of wheat seedlings to organic pollutant 1,2,4-trichlorobenzene [J]. New Zeal J Crop Hort, 2012, 40 (2): 73-85
14 Abo-State MAM, Saleh YE, Khalil OAA. Pathway of 1,2,4 -Trichlorobenzene Degradation by Bacillus mucilaginosus Isolated from petroleum polluted soils [J]. J Ecol Heal Environ, 2016, 4 (2): 49-59
15 周霞, 余刚, 黄俊, 张祖麟, 胡洪营. 北京东南郊化工区土壤和植物中氯苯类有机物的残留及分布特征[J]. 环境科学, 2007, 28 (2): 249-254 [Zhou X, Yu G, Huang J, Zhang Z L, Hu H Y. Residues and distribution characters of chlorobenzenes in soil and plants from Beijing southeast chemical industry zone [J]. Environ Sci, 2007, 28 (2): 249-254]
16 崔健, 都基众, 杨泽, 马宏伟, 李霄. 沈阳市城郊土壤有机污染特征[J]. 生态学杂志, 2011, 30 (11): 2472-2477 [Cui J, Du JZ, Yang Z, Ma HW, Li X. Characteristics of soil organic pollution in Shenyang suburbs of Liaoning Province, Northeast China [J]. Chin J Ecol, 2011, 30 (11): 2472-2477]
17 蔡全英, 奠测辉, 吴启堂, 李桂荣, 王伯光, 田凯, 李拓. 部分城市污泥中氯苯类化合物的初步研究[J]. 环境化学, 2002, 21 (2): 139-143 [Cai QY, Mo CH, Wu QT, Li GRm, Wang BG, Tian K, Li T. Preliminary study on the content of chlorobenzenes in selected municipal sludge of china. Environ Chem, 2002, 21 (2): 139-143]
19 刘玉萍.松花江水体氯苯类污染物的污染[J]. 环境科学与管理, 2006, 3l (5): 91-92 [Liu YP. Study of chlorobenzene’s pollution in the Songhua River [J]. Environ Sci Manage, 2006, 3l (5): 91-92]
19 朱明吉, 郭志顺.三峡库区重庆段有机污染研究[J]. 三峡环境与生态, 2009, 2 (2): 5-11 [Zhu MJ, Guo ZS. Research on organic pollution in Chongqing Section of the Three Gorges Reservoir [J]. Environ Ecol Three Gorges, 2009, 2 (2): 5-11]
20 石建省, 王昭, 张兆吉, 费宇宏, 张凤娥, 李亚松, 陈京生, 钱永. 华北平原地下水有机污染特征初步分析[J]. 生态环境学报, 2011, 20 (11): 1695-1699 [Shi JS, Wang Z, Zhang ZJ, Fei YH, Zhang FE, Li YS, Chen JS, Qian Y. Preliminary analysis on the organic contamination of groundwater in the North China Plain [J]. Ecol Environ, 2011, 20 (11): 1695-1699]
21 Zhang JY, Zhao W, Pan J, Qiu LM, Zhu YM. Tissue-dependent distribution and accumulation of chlorobenzenes by vegetables in urban area [J]. Environ Int, 2005, 31 (6): 855-860
22 Lin YR, Schertz KF, Paterson AH. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population [J]. Genetics, 1995, 141 (1): 391-411
23 Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length [J]. Plant Mol Biol, 2005, 58 (6): 809-822
24 Zhang MD, Ran RL, SaiNao WQ, Feng Y, Jia LY, Sun K, Wang RF, Feng HQ. Physiological effects of short-term copper stress on rape (Brassica napus L.) seedlings and the alleviation of copper stress by attapulgite clay in growth medium [J]. Ecotox Environ safe, 2019, 171 (30): 878-886
25 Anjorin FB, Adejumo SA, Agboola L, Samuel YD. Proline, soluble sugar, leaf starch and relative water contents of four maize varieties in response to different watering regimes [J]. Cercetari Agron Moldova, 2016, 49 (3): 51- 62
26 Achary VM, Jena S, Panda KK, Panda BB . Aluminum induced oxidative stress and DNA damage in root cells of Allium cepa L. [J]. Ecotox Environ Safe, 2008, 70 (2): 300-310
27 Li XN, Yang YL, Jia LY, Chen HJ, Wei X. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants [J]. Ecotox Environ Safe, 2013, 89 (11): 150-157
28 Zaytseva O, Neumann G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications [J]. Chem Biol Technol Agric, 2016, 3 (17): 1-26
29 Zaytseva O, Wang Z, Neumann G. Phytotoxicity of carbon nanotubes in soybean as determined by interactions with micronutrients [J]. J Nanopart Res, 2017, 19 (2): 1-18.
30 Edward W, Jones KC. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants [J]. Environ Sci Technol, 2009, 43 (14): 5290-5294
31 胡筑兵, 陈亚华, 王桂萍, 沈振国. 铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响[J]. 植物学通报, 2006, 23 (2): 129-137 [Hu ZB, Chen YH, Wang GP, Shen ZG. Effects of copper stress on growth chlorophyll fluorescence parameters and antioxidant enzyme activities of zea mays seedlings [J]. Chin Bull Bot, 2006, 23 (2): 129-137]
32 王泽港, 葛才林, 万定珍, 郦志文, 罗时石, 杨建昌. 1, 2, 4-三氯苯和萘对水稻幼苗生长的影响[J]. 农业环境科学学报, 2006, 25 (6) : 1402-1407 [Wang ZX, Ge CL, Wan DZ, Li ZW, Luo SZ, Yang JC. Effects of 1, 2, 4-trichlorobenzene and naphthalene on growth of rice seedling [J]. J Agro-environ Sci, 2006, 25 ( 6): 1402-1407]
33 Wang HH, Kou XM, Pei ZG. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants [J]. Nanotoxicology, 2011, 5 (1): 30-42

相似文献/References:

[1]谈高维,韦布春,崔永亮,等.镉钝化细菌对水稻幼苗镉吸收的影响[J].应用与环境生物学报,2019,25(03):524.[doi:10.19675/j.cnki.1006-687x.201812006]
 TAN Gaowei,WEI Buchun,CUI Yongliang,et al.Effects of cadmium passivation bacteria on the growth and cadmium adsorption of rice seedlings[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):524.[doi:10.19675/j.cnki.1006-687x.201812006]

更新日期/Last Update: 2020-06-25