|本期目录/Table of Contents|

[1]赵思越,李才武,杨盛智,等.大熊猫肠道噬菌体的多样性[J].应用与环境生物学报,2020,26(03):489-498.[doi:10.19675/j.cnki.1006-687x.2019.07034]
 ZHAO Siyue#,LI Caiwu#,YANG Shengzhi,et al.Diversity of intestinal phages in giant pandas[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):489-498.[doi:10.19675/j.cnki.1006-687x.2019.07034]
点击复制

大熊猫肠道噬菌体的多样性
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
489-498
栏目:
研究论文
出版日期:
2020-06-25

文章信息/Info

Title:
Diversity of intestinal phages in giant pandas
作者:
赵思越李才武杨盛智李果何永果吴代福黄炎张和民邹立扣
1四川农业大学资源学院应用微生物学系 成都 611130 2中国大熊猫保护研究中心大熊猫国家公园珍稀动物保护生物学国家林业和草原局重点实验室 都江堰 611830
Author(s):
ZHAO Siyue1# LI Caiwu2# YANG Shengzhi1 LI Guo2 HE Yongguo2 WU Daifu2 HUANG Yan2 ZHANG Heming2 & ZOU Likou1?
1 Faculty of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China 2 Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
关键词:
大熊猫宏基因组学噬菌体肠道微生物生境
Keywords:
giant panda metagenomics phage gut microbiota habitat
DOI:
10.19675/j.cnki.1006-687x.2019.07034
摘要:
噬菌体在维持宿主肠道微环境中起着重要作用. 运用宏基因组学方法全面探究大熊猫肠道噬菌体的多样性. 共注释到548种噬菌体,主要来自11个科38个属548个种. 大多数噬菌体主要来自长尾病毒科Siphoviridae、肌尾噬菌体科Myoviridae和短尾噬菌体科Podoviridae,所占比例分别为41.7%、27.6%和19.5%. 其中未分类到科的噬菌体占10.5%. 38个属主要为λ样病毒属(10.3%)、T4样病毒属(8.0%)、P1样病毒属(7.1%)、Phieco32样病毒属(5.3%)、T5样噬菌体属(3.4%)等. 548个噬菌体中有22种丰度超过了1%,主要为肠细菌噬菌体P1(7.0%)、链球菌噬菌体LYGO9(6.1%)、肠细菌噬菌体λ(5.3%)、肠细菌噬菌体Phieco32(5.2%)、链球菌噬菌体phi30c(3.8%)等. 此外,不同大熊猫繁育基地之间噬菌体群落结构存在显著差异(科水平:R = 0.168,P < 0.01;属水平:R = 0.128,P < 0.01;种水平:R = 0.291,P < 0.01),在α多样性指数方面SSP基地的Chao1指数与其他两个基地之间存在着显著差异. 本研究发现大熊猫肠道噬菌体种群丰富多样,且因生境不同而显著变化;结果有助于挖掘大熊猫肠道噬菌体在疾病防控及治疗的潜力,为保障大熊猫的肠道健康提供新的思路. (图17 表2 参34)
Abstract:
Bacteriophages play an important role in maintaining the intestinal microenvironment of the host. Currently, only a few studies have reported on the intestinal bacteriophages of giant pandas. In this study, we explored the intestinal bacteriophages of giant pandas based on metagenomics. We found a total of 548 kinds of bacteriophages, mainly belonging to 11 families, 38 genera, and 548 species. Most of the bacteriophages were primarily from Siphoviridae, Myoviridae, and Podoviridae, accounting for 41.7%, 27.6%, and 19.5%, respectively, of the total population. Among them, 10.5% were bacteriophages that were not classified into families yet. The 38 identified genera mainly included lambda-like viruses (10.3%), T4-like viruses (8.0%), P1-like viruses (7.1%), Phieco32-like viruses (5.3%), and T5-like viruses (3.4%). Among the 548 species of phages, 22, accounting for more than 1%, mainly included enterobacterial bacteriophage P1 (7.0%), streptococcal bacteriophage LYGO9 (6.1%), enterobacterial bacteriophage lambda (5.3%), enterobacterial bacteriophage Phieco32 (5.2%), and streptococcal bacteriophage phi30c (3.8%). Moreover, there were significant differences in the structure of bacteriophage community among different breeding bases of giant pandas (family level: R = 0.168, P < 0.01; genus level: R = 0.128, P < 0.01; species level: R = 0.291, P < 0.01). There were significant differences in alpha diversity index between the SSP base and other two bases. This study reveals that the intestinal phages in giant pandas are of rich diversity and varied with different habitats, which would help to further address the potential of intestinal bacteriophages in disease prevention, control, and treatment and provide new insights into gut health protection of giant pandas.

参考文献/References:

1 Ley R, Hamady M, Lozupone C, Turnbaugh P, Ramey R, Bircher J, Schlegel M, Tucker T, Schrenzel M, Knight R, Gordon J. Evolution of mammals and their gut microbes [J]. Science, 2008, 320 (5883): 1647-1651
2 Kamada N, Seo SU, Chen GY, Gabriel N. Role of the gut microbiota in immunity and inflammatory disease [J]. Nat Rev Immunol, 2013, 13 (5): 321-335
3 Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI. Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut [J]. PNAS, 2013, 110 (50): 20236-20241
4 Norman JM, Handley SA, Baldridge MT, Kambal A, Monaco CL, Zhao GY, Fleshner P, Stappenbeck TS, McGovern D, Keshavarzian A, Mutlu EA, Sauk J, Gevers D, Xavier RJ, Wang D, Parkes M, Virgin HW. Disease-specific alterations in the enteric virome in inflammatory bowel disease [J]. Cell, 2015, 160 (3): 447-460
5 Manrique P, Bolduc B, Walk ST, Young MJ, Willem M, Bolduc B, Manrique P. Healthy human gut phageome [J]. PNAS, 2016, 113 (37): 10400-10405
6 Wei F, Costanza R, Dai Q, Stoeckl N, Gu X, Farber S, Nie Y, Kubiszewski I, Hu Y, Swaisgood R, Yang X, Michael B, Chen Y, Voinov A, Qi D, Owen M, Yan L, Daniel CK, Zhang Z, Hou R, Jiang S, Liu H, Zhan X, Zhang L, Yang B, Zhao L, Zheng X, Zhou W, Wen Y, Gao H, Zhang W. The value of ecosystem services from giant panda reserves [J]. Curr Biol, 2018, 28 (13): 2174-2180
7 Qiao M, Zhou Y, Connor T, Li R, Tan D. Diagnosing zygosity in giant panda twins using short tandem repeats [J]. Twin Res Hum Genet, 2018, 21 (6): 527-532
8 Yang S, Gao X, Meng J, Zhang A, Zhou Y, Long M, Li B, Deng W, Jin L, Zhao S, Wu D, He Y, Li C, Liu S, Huang Y, Zhang H, Zou L. Metagenomic analysis of bacteria, fungi, bacteriophages, and helminths in the gut of giant pandas [J]. Front Microbiol, 2018, 9: 1717
9 Zhang W, Liu W, Hou R, Zhang L, Stephan SE, Sun H, Xie J, Zhang Y, Wang C, Li L, Yue B, Huang H, Wang H, Shen F, Zhang Z. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose [J]. ISME J, 2018, 12 (5): 1319-1328
10 Zhang ZY, Zhang HM, Li DS, Xiong TY, Fang SG. Characterization of the beta-defensin genes in giant panda [J]. Sci Rep, 2018, 8 (1): 12308
11 Guo W, Mishra S, Zhao J, Tang J, Zeng Bo, Kong F, Ning R, Li M, Zhang H, Zeng Y, Tian Y, Zhong Y, Luo H, Liu Y, Yang J, Yang M, Zhang M, Li Y, Ni Q, Li C, Wang C, Li D, Zhang H, Zuo Z, Li Y. Metagenomic study suggests that the gut microbiota of the giant panda (Ailuropoda melanoleuca) may not be specialized for fiber fermentation [J]. Front Microbiol, 2018, 9: 229
12 Yang X, Cheng G, Li C, Yang J, Li J, Chen D, Zou W, Jin S, Zhang H, Li D, He Y, Wang C, Wang M, Wang H. The normal vaginal and uterine bacterial microbiome in giant pandas (Ailuropoda melanoleuca) [J]. Microbiol Res, 2017, 199: 1-9
13 Liu N, Li H, Chevrette MG, Zhang L, Cao L, Zhou H, Zhou X, Zhou Z, Pope PB, Currie CR, Huang Y, Wang Q. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite [J]. ISME J, 2019, 13 (1): 104-117
14 Vital M, Howe A, Bergeron N, Krauss RM, Jansson JK, Tiedje JM. Metagenomic insights into the degradation of resistant starch by human gut microbiota [J]. Appl Environ Microbiol, 2018, 84 (23): 96-100
15 Zhang X, Chen Y, Zhu J, Zhang M, Ho CT, Huang Q, Cao J. Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (-)-Epigallocatechin 3-O- (3-O-Methyl) gallate (EGCG3’’Me) [J]. Mol Nutr Food Res, 2018, 62 (13): e1800274
16 Yinda CK, Vanhulle E, Concei??o NN, Beller L, Deboutte W, Shi C, Ghogomu SM, Maes P, Van RM, Matthijnssens J. Gut virome analysis of cameroonians reveals high diversity of enteric viruses, including potential interspecies transmitted viruses [J]. Msphere, 2019, 4 (1): 30-39
17 Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, Bouquet J, Greninger AL, Luk KC, Enge B, Wadford DA, Messenger SL, Genrich GL, Pellegrino K, Grard G, Leroy E, Schneider BS, Fair JN, Martínez MA, Isa P, Crump JA, DeRisi JL, Sittler T, Hackett JJ, Miller S, Chiu CY. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples [J]. Genome Res, 2014, 24 (7): 1180-1192
18 Ackermann HW. Bacteriophage observations and evolution [J]. Res Microbiol, 2003, 154 (4): 245-251
19 Bondy DJ, Davidson AR. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness [J]. J Microbiol, 2014, 52 (3): 235-242
20 Lusiak SM, Weber DB, Jonczyk-Matysiak E, Wojciechowska R, Górski A. Bacteriophages in the gastrointestinal tract and their implications [J]. Gut Pathog, 2017, 9: 44
21 Brown K, Olendraite I, Valles SM, Firth AE, Chen Y, Guérin DM, Hashimoto Y, Herrero S, Miranda JR, Ryabov E. ICTV virus taxonomy profile: Solinviviridae [J]. J Gen Virol, 2019, 100 (5): 736-737
22 Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. Experimental phage therapy against Staphylococcus aureus in mice [J]. Antimicrob Agents Chemother, 2007, 51 (8): 2765-2773
23 Kropinski AM, Clokie MR. Methods in molecular biology. Introduction [J]. Methods Mol Biol, 2009, 502: 13-22
24 Zhou ZH, Chiou J. Protein chainmail variants in dsDNA viruses [J]. Aims Biophys, 2015, 2 (2): 200-218
25 Skalka A, Burgi E, Hershey AD. Segmental distribution of nucleotides in the DNA of bacteriophage lambda [J]. J Mol Biol, 1968, 34 (1): 1-16
26 Shen M, Le S, Jin X, Li G, Tan Y, Li M, Zhao X, Shen W, Yang Y, Wang J, Zhu H, Li S, Rao X, Hu F, Lu S. Characterization and comparative genomic analyses of Pseudomonas aeruginosa phage PaoP5: new members assigned to PAK_P1-like viruses [J]. Sci Rep, 2016, 6: 34067
27 Lobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1 [J]. J Bacteriol, 2004, 186 (21): 7032-7068
28 柏琴琴, 杨永春, 陆承平. 牛源无乳链球菌长尾噬菌体的特性 [J]. 微生物学报, 2016, 56 (2): 317-326 [Bai QQ, Yang YC, Lu CP. Isolation and characterization of siphovirus phages infecting bovine Streptococcus agalactiae [J]. Acta Microbiol Sin, 2016, 56 (2): 317-326]
29 Lederberg E M, Lederberg J. Genetic studies of lysogenicity in Escherichia coli [J]. Genetics, 1953, 38 (1): 51-64
30 Groth AC, Calos MP. Phage integrases: biology and applications [J]. J Mol Biol, 2004, 335 (3): 667-678
31 何永果, 晋蕾, 李果, 李才武, 李蓓, 李伟, 张亚辉, 胡正泉, 黄炎, 张和民,邹立扣. 基于高通量测序技术研究成年大熊猫肠道菌群[J]. 应用与环境生物学报, 2017, 23 (5): 771-777 [He YG, Jin L, Li G, Li CW, Li B, Li W, Zhang YH, Hu ZQ, Huang Y, Zhang HM, Zou LK. Gut microbiome of adult giant pandas based on high-throughput sequencing technology [J]. Chin J Appl Environ Biol, 2017, 23 (5): 771-777] 32
32 Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota [J]. Gut Microbes, 2013, 4 (1): 4-16
33 Brown-Jaque M, Muniesa M, Navarro F. Bacteriophages in clinical samples can interfere with microbiological diagnostic tools [J]. Sci Rep, 2016, 6: 33000
34 Murray NE. Special uses of lambda phage for molecular cloning [J]. Methods Enzymol, 1991, 204: 280-301

相似文献/References:

[1]方盛国,张万诚,冯文和,等.大熊猫、黑熊和小熊猫毛发无机元素的比较[J].应用与环境生物学报,1995,1(03):232.
 Fang Shengguo,Zhang Wancheng,Feng Wenhe,et al.A COMPARATIVE STUDY OF INORGANIC ELEMENTS IN THE HAIRS OF AILUROPODA MEIANOLEUCUS,SELENARCTOS THIBETANUS AND AILURUS FULGENS[J].Chinese Journal of Applied & Environmental Biology,1995,1(03):232.
[2]方盛国,冯文和,张安居,等.佛坪三官庙地区大熊猫种群数量的DNA指纹分析[J].应用与环境生物学报,1996,2(03):289.
 Fang Shengguo,Feng Wenhe,Zhang Anjn,et al.DNA FINGERPRINTING ANALYSIS OF THE POPULATION NUMBER OF GIANT PANDAS LIVING IN SANGUANMIAO IN FOPING[J].Chinese Journal of Applied & Environmental Biology,1996,2(03):289.
[3]余健秋,钟顺隆,李光汉,等.大熊猫人工育幼研究[J].应用与环境生物学报,1997,3(01):36.
 Yu Jianqiu,Zhong Shunlong,Li Guanghsn,et al.ARTIFICIAL FEEDING OF INFANT GIANT PANDA[J].Chinese Journal of Applied & Environmental Biology,1997,3(03):36.
[4]周世强,黄金燕,张亚辉,等.卧龙自然保护区大熊猫栖息地植物群落多样性Ⅴ:不同竹林的物种多样性[J].应用与环境生物学报,2009,15(02):180.[doi:10.3724/SP.J.1145.2009.00180]
 ZHOU Shiqiang,HUANG Jinyan,ZHANG Yahui,et al.Diversity of Plant Community of Giant Panda’s Habitat in the Wolong Nature Reserve Ⅴ: Species Diversity in Different Bamboo Forests[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):180.[doi:10.3724/SP.J.1145.2009.00180]
[5]范隆庆,董岚,张顺林,等.凉山山系大熊猫栖息地的景观格局[J].应用与环境生物学报,2010,16(02):179.[doi:10.3724/SP.J.1145.2010.00179]
 FAN Longqing,DONG Lan,ZHANG Shunlin,et al.Landscape Pattern of Giant Panda Habitat in the Liangshan Mountains, Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):179.[doi:10.3724/SP.J.1145.2010.00179]
[6]周世强,黄金燕,张亚辉,等.野化培训大熊猫采食和人为砍伐对拐棍竹无性系种群生物量的影响[J].应用与环境生物学报,2012,18(01):1.[doi:10.3724/SP.J.1145.2012.00001]
 ZHOU Shiqiang,HUANG Jinyan,ZHANG Yahui,et al.Effects of Wildness Training Giant Pandas?Grazing and Artificial Harvesting on Clone Population Biomass of Umbrella Bamboo (Fargesia robusta)*[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):1.[doi:10.3724/SP.J.1145.2012.00001]
[7]陈丹丹,顾胜华,张金娜,等.肠道菌群对免疫系统的影响及其群落分析方法[J].应用与环境生物学报,2013,19(03):542.[doi:10.3724/SP.J.1145.2013.00542]
 CHEN Dandan,GU Shenghua,ZHANG Jinna,et al.Effect of Intestinal Microbes on the Immune System and the Latest Research Methods[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):542.[doi:10.3724/SP.J.1145.2013.00542]
[8]陈剑,李君文,邱志刚,等.CTX-M型产ESBLs耐药基因在城市典型河流中的生态分布[J].应用与环境生物学报,2014,20(01):40.[doi:10.3724/SP.J.1145.2014.00040]
 CHEN Jian,LI Junwen,QIU Zhigang,et al.Ecological distribution of CTX-M extended-spectrum β-lactamase antibiotic resistant gene in typical city rivers of China[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):40.[doi:10.3724/SP.J.1145.2014.00040]
[9]侯宁,戴强,冉江洪,等.大相岭山系泥巴山大熊猫生境廊道设计[J].应用与环境生物学报,2014,20(06):1039.[doi:10.3724/SP.J.1145.2014.06003]
 HOU Ning,DAI Qiang,RAN Jianghong,et al.A corridor design for the giant panda in the Niba Mountain of China[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):1039.[doi:10.3724/SP.J.1145.2014.06003]
[10]张晋东,李玉杰,王玉君,等.两种野生大熊猫种群数量调查方法对比[J].应用与环境生物学报,2017,23(06):1142.[doi:10.3724/SP.J.1145.2017.01010]
 ZHANG Jindong**,LI Yujie,WANG Yujun,et al.Comparison of two population investigation methods for wild giant pandas[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):1142.[doi:10.3724/SP.J.1145.2017.01010]

更新日期/Last Update: 2020-06-25