|本期目录/Table of Contents|

[1]缪晡,苟敏,陈栋,等.不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价[J].应用与环境生物学报,2019,25(05):1185-1191.[doi:10.19675/j.cnki.1006-687x.2019.07015]
 MIAO Pu,GOU Min,CHEN Dong & TANG Yueqin,et al.Genome-wide evaluation of constitutive and inducible promotors in Saccharomyces cerevisiae utilizing different carbon sources[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1185-1191.[doi:10.19675/j.cnki.1006-687x.2019.07015]
点击复制

不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1185-1191
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Genome-wide evaluation of constitutive and inducible promotors in Saccharomyces cerevisiae utilizing different carbon sources
作者:
缪晡苟敏陈栋汤岳琴
1中石化上海工程有限公司 上海 200120 2四川大学建筑与环境学院 成都 610065 3四川省环境保护有机废弃物资源化利用重点实验室 成都 610065
Author(s):
MIAO Pu1 GOU Min2 3 CHEN Dong1 & TANG Yueqin2 3**
1 Sinopec Shanghai Engineering Co. Ltd., Shanghai 200120, China 2 Environmental Biotechnology Research Center, College of Architecture and Environment, Sichuan University, Chengdu 610065, China 3 Sichuan Environmental Protection Key Laboratory of Organic Waste Resource Utilization, Chengdu 610065, China
关键词:
启动子酿酒酵母转录组木糖利用
Keywords:
spromoter Saccharomyces cerevisiae transcriptome xylose utilization
分类号:
TQ92
DOI:
10.19675/j.cnki.1006-687x.2019.07015
摘要:
木糖是秸秆等纤维素类生物质原料中含量仅次于葡萄糖的第二丰富的糖,构建可高效发酵木糖的酿酒酵母菌株是提高原料利用率、降低纤维素燃料乙醇生产成本的基础. 外源基因的高效表达以及本源基因的调控都需要选择表达强度合适的启动子. 基于比较转录组,在全基因组水平上比较解析酿酒酵母所有基因在发酵葡萄糖、发酵木糖、发酵混合糖(葡萄糖和木糖)条件下的表达强度,拟为构建木糖利用菌株提供一系列备选的启动子库. 结果表明,碳源种类对酿酒酵母启动子的强度有显著影响,绝大多数启动子强度受碳源影响显著,有67个启动子的强度在不同碳源条件下保持了相对稳定;启动子PTEF1和PTEF2、PADH1、PCCW12和某些核糖体蛋白基因启动子可在构建木糖利用菌株时作为组成型强启动子,另有中、弱强度的组成型启动子可用于基因表达优化;启动子PYNR071C、PPUT1、PDSF1等可作为利用木糖时的诱导型启动子,使基因在有需要的时候才进行表达. 本研究在系统解析全基因组启动子强度和碳源种类的关系基础上,为构建利用不同碳源的酿酒酵母菌株提供了具有不同表达特征的候选启动子库. (图1 表6 参24)
Abstract:
Xylose is the second most abundant sugar in lignocellulosic biomass, but it is not a natural carbon source for Saccharomyces cerevisiae. To increase the resource utilization efficiency and reduce the cost of bioethanol production, it is crucial to construct strains able to ferment xylose effectively. The efficient expression of exogenous genes and the regulation of native genes require the selection of promotors with appropriate expression strength. However, until now, research on the strength, stability, and inducibility of promotors in S. cerevisiae, when fermenting glucose, xylose, or mixed sugars, is very limited. In this study, genome-wide transcriptome data were used to evaluate promoter strength in an industrial xylose-utilizing strain in response to four different carbon source conditions (glucose, xylose, and mixed sugars). The strength of most of the promotors changed when utilizing carbon sources other than glucose, whereas 67 promotors maintained their strength level under different sugar conditions. A series of promoter libraries were generated for genetic engineering. PTEF1, PTEF2, PADH1, PCCW12, and some ribosomal protein promotors can serve as strong constitutive promotors for xylose-utilizing strain construction. Constitutive media and weak promotors that could be used for strain optimization were summarized. PYNR071C, PPUT1, and PDSF1 could be used as inducible promotors for xylose fermentation, driving high levels of gene expression only when necessary. The libraries of constitutive and inducible promotors with different strengths provided in this study will be useful for the genetic engineering of xylose-utilizing S. cerevisiae strains.

参考文献/References:

1 Lee JW, Kim TY, Jang YS, Choi S, Lee SY. Systems metabolic engineering for chemicals and materials [J]. Trends Biotechnol, 2011, 29: 370-378
2 Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu JH, Zhao H. Cloning and characterization of a panel of constitutive promotors for applications in pathway engineering in Saccharomyces cerevisiae [J]. Biotechnol Bioeng, 2012, 109: 2082-2092
3 Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promotors in yeasts [J]. Microb Cell Fact, 2014, 13: 5
4 Peng B. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities [J]. Microb Cell Fact, 2015, 14: 91
5 Da SN, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae [J]. FEMS Yeast Res, 2011, 12: 197-214
6 Partow S, Siewers V, Bj?rn S, Nielsen J, Maury J. Characterization of different promotors for designing a new expression vector in Saccharomyces cerevisiae [J]. Yeast, 2010, 27: 955-964
7 Williams TC, Espinosa MI, Nielsen LK, Vickers CE. Dynamic regulation of gene expression using sucrose responsive promotors and RNA interference in Saccharomyces cerevisiae [J]. Microb Cell Fact, 2015, 14: 43
8 Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production [J]. Curr Opin Biotechnol, 2016, 19: 556
9 Shen MW, Fang F, Sandmeyer S, Da Silva NA. Development and characterization of a vector set with regulated promotors for systematic metabolic engineering in Saccharomyces cerevisiae [J]. Yeast, 2012, 29: 495
10 Xiong L, Zeng Y, Tang RQ, Alper HS, Bai FW, Zhao XQ. Condition-specific promoter activities in Saccharomyces cerevisiae [J]. Microb Cell Fact, 2018, 17: 58
11 Redden H, Alper HS. The development and characterization of synthetic minimal yeast promotors [J]. Nat Commun, 2015, 6: 7810
12 Lu C, Jeffries T. Shuffling of promotors for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiaestrain [J]. Appl Environ Microbiol, 2007, 73: 6072-6077
13 Nambu-Nishida Y, Sakihama Y, Ishii J, Hasunuma T, Kondo A. Selection of yeast Saccharomyces cerevisiae promotors available for xylose cultivation and fermentation [J]. J Biosci Bioeng, 2018, 125: 76-86
14 Zeng WY, Tang YQ, Gou M, Xia ZY, Kida K. Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources [J]. AMB Express, 2016, 6: 51
15 Kida K, Morimura S, Sonoda Y. Repeated-batch fermentation process using a flocculating yeast constructed by protoplast fusion [J]. J Ferment Bioeng, 1992, 74: 169-173
16 Li YC, Mitsumasu K, Gou ZX, Gou M, Tang YQ, Li GY, Wu XL, Akamatsu T, Taguchi H, Kida K. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37 [J]. Appl Microbiol Biotechnol, 2016, 100: 1531-1542
17 Irizarry RA, Hobbs B, Collin F, Beazer‐Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J]. Biostatistics, 2003, 4: 249-264
18 Keren L, Zackay O, Lotanpompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A. Promotors maintain their relative activity levels under different growth conditions [J]. Mol Syst Biol, 2013, 9: 701
19 Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering [J]. Nucleic Acids Res, 2012, 40: 177-209
20 Lee ME. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay [J]. Nucleic Acids Res, 2013, 41: 10668-10678
21 Tirosh I, Wong KH, Barkai N, Struhl K. Extensive divergence of yeast stress responses through transitions between induced and constitutive activation [J]. PNAS, 2011, 108: 16693-16698
22 Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M, Sauer U, Aebersold R. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics [J]. Mol Syst Biol, 2011, 7: 464
23 Hubmann G, Thevelein JM, Nevoigt E. Natural and modified promotors for tailored metabolic engineering of the yeast Saccharomyces cerevisiae[J]//Mapelli V. Yeast Metabolic Engineering. Methods in Molecular Biology (Methods and Protocols). New York: Humana Press, 2014
24 Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Tong IL, Young RA. Revisiting global gene expression analysis [J]. Cell, 2012, 151: 476-482

相似文献/References:

[1]麻密,周达锋,许家喜,等.细胞分裂素基因(T-cyt)在转基因烟草中的表达及其对生长发育的影响[J].应用与环境生物学报,1996,2(01):1.
 Ma Mi,Zhou Dafeng,Xu Jiaxi,et al.THE EXPRESSION OF T-cyt GENE IN TRANSGENIC TOBACCO AND REGULATION FOR PLANT DEVEOLPMENT[J].Chinese Journal of Applied & Environmental Biology,1996,2(05):1.
[2]郜瑞莹,王建龙.酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究[J].应用与环境生物学报,2007,13(06):848.
 GAO Ruiying,et al..Kinetics and Equilibrium of Cu2+ Biosorption by Dried Biomass of Saccharomyces cerevisia[J].Chinese Journal of Applied & Environmental Biology,2007,13(05):848.
[3]张金辉,龙海,邓光兵,等.异表达启动子的克隆与活性检测[J].应用与环境生物学报,2008,14(03):328.
 ZHANG Jinhui,et al..Cloning and Activity Assaying of Antherspecific Promoter in Rice[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):328.
[4]叶婷 姚陈 李茜茜 张红星 李 林.假单胞菌表达载体pYMB03的构建与性能分析[J].应用与环境生物学报,2008,14(04):528.
[5]李岩,王海燕,张义正.甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位[J].应用与环境生物学报,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
 LI Yan,WANG Haiyan,ZHANG Yizheng.Localization of IbSUT1x Protein from Ipomoea batatas (L.) Lam in Yeast Cells[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):798.[doi:10.3724/SP.J.1145.2010.00798]
[6]段静波,李少贺,阮琨,等.盐生杜氏藻烯醇酶基因启动子的克隆分析及胁迫转录应答[J].应用与环境生物学报,2011,17(02):202.[doi:10.3724/SP.J.1145.2011.00202]
 DUAN Jingbo,LI Shaohe,RUAN Kun,et al.Cloning of Promoter of the Enolase Gene from Duanliella salina and Its Transcriptional Response to Stress[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):202.[doi:10.3724/SP.J.1145.2011.00202]
[7]李宇浩,靳艳玲,龙飞,等.降粘酶在新鲜木薯发酵生产高浓度乙醇中的应用[J].应用与环境生物学报,2013,19(03):501.[doi:10.3724/SP.J.1145.2013.00501]
 LI Yuhao,JIN Yanling,LONG Fei,et al.Using Viscosity Reducing Enzyme as Annexing Agent in the Very High Gravity Ethanol Fermentation with Fresh Cassava[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):501.[doi:10.3724/SP.J.1145.2013.00501]
[8]柯崇榕,吴毕莎,邵庆伟,等.酿酒酵母PDC1基因过表达菌株的构建[J].应用与环境生物学报,2013,19(04):704.[doi:10.3724/SP.J.1145.2013.00704]
 KE Chongrong,WU Bisha,SHAO Qingwei,et al.Construction of Saccharomyces cescerevisiae Mutant with Overexpression of PDC1 Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):704.[doi:10.3724/SP.J.1145.2013.00704]
[9]涂毅,高秋强,鲍杰.外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达[J].应用与环境生物学报,2013,19(05):811.[doi:10.3724/SP.J.1145.2013.00811]
 TU Yi,GAO Qiuqiang,BAO Jie.Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):811.[doi:10.3724/SP.J.1145.2013.00811]
[10]盛冠一,诸葛斌,宗红,等.高灵敏度铜抗性酿酒酵母表达系统的构建与应用[J].应用与环境生物学报,2014,20(03):357.[doi:10.3724/SP.J.1145.2014.12033]
 SHENG Guanyi,ZHUGE Bin,ZONG Hong,et al.Construction and application of the high sensitivity expression system of copper-resistant Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):357.[doi:10.3724/SP.J.1145.2014.12033]
[11]缪晡 苟敏 陈栋 汤岳琴**.不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价*[J].应用与环境生物学报,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.07015]
 MIAO Pu,Gou Min,CHEN Dong,et al.Genome-wide evaluation of constitutive and regulated promoters in Saccharomyces cerevisiae in different carbon sources*[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1.[doi:10.19675/j.cnki.1006-687x.2019.07015]

更新日期/Last Update: 2019-10-25