1 Lee JW, Kim TY, Jang YS, Choi S, Lee SY. Systems metabolic engineering for chemicals and materials [J]. Trends Biotechnol, 2011, 29: 370-378 2 Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu JH, Zhao H. Cloning and characterization of a panel of constitutive promotors for applications in pathway engineering in Saccharomyces cerevisiae [J]. Biotechnol Bioeng, 2012, 109: 2082-2092 3 Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promotors in yeasts [J]. Microb Cell Fact, 2014, 13: 5 4 Peng B. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities [J]. Microb Cell Fact, 2015, 14: 91 5 Da SN, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae [J]. FEMS Yeast Res, 2011, 12: 197-214 6 Partow S, Siewers V, Bj?rn S, Nielsen J, Maury J. Characterization of different promotors for designing a new expression vector in Saccharomyces cerevisiae [J]. Yeast, 2010, 27: 955-964 7 Williams TC, Espinosa MI, Nielsen LK, Vickers CE. Dynamic regulation of gene expression using sucrose responsive promotors and RNA interference in Saccharomyces cerevisiae [J]. Microb Cell Fact, 2015, 14: 43 8 Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production [J]. Curr Opin Biotechnol, 2016, 19: 556 9 Shen MW, Fang F, Sandmeyer S, Da Silva NA. Development and characterization of a vector set with regulated promotors for systematic metabolic engineering in Saccharomyces cerevisiae [J]. Yeast, 2012, 29: 495 10 Xiong L, Zeng Y, Tang RQ, Alper HS, Bai FW, Zhao XQ. Condition-specific promoter activities in Saccharomyces cerevisiae [J]. Microb Cell Fact, 2018, 17: 58 11 Redden H, Alper HS. The development and characterization of synthetic minimal yeast promotors [J]. Nat Commun, 2015, 6: 7810 12 Lu C, Jeffries T. Shuffling of promotors for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiaestrain [J]. Appl Environ Microbiol, 2007, 73: 6072-6077 13 Nambu-Nishida Y, Sakihama Y, Ishii J, Hasunuma T, Kondo A. Selection of yeast Saccharomyces cerevisiae promotors available for xylose cultivation and fermentation [J]. J Biosci Bioeng, 2018, 125: 76-86 14 Zeng WY, Tang YQ, Gou M, Xia ZY, Kida K. Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources [J]. AMB Express, 2016, 6: 51 15 Kida K, Morimura S, Sonoda Y. Repeated-batch fermentation process using a flocculating yeast constructed by protoplast fusion [J]. J Ferment Bioeng, 1992, 74: 169-173 16 Li YC, Mitsumasu K, Gou ZX, Gou M, Tang YQ, Li GY, Wu XL, Akamatsu T, Taguchi H, Kida K. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37 [J]. Appl Microbiol Biotechnol, 2016, 100: 1531-1542 17 Irizarry RA, Hobbs B, Collin F, Beazer‐Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J]. Biostatistics, 2003, 4: 249-264 18 Keren L, Zackay O, Lotanpompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A. Promotors maintain their relative activity levels under different growth conditions [J]. Mol Syst Biol, 2013, 9: 701 19 Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering [J]. Nucleic Acids Res, 2012, 40: 177-209 20 Lee ME. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay [J]. Nucleic Acids Res, 2013, 41: 10668-10678 21 Tirosh I, Wong KH, Barkai N, Struhl K. Extensive divergence of yeast stress responses through transitions between induced and constitutive activation [J]. PNAS, 2011, 108: 16693-16698 22 Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M, Sauer U, Aebersold R. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics [J]. Mol Syst Biol, 2011, 7: 464 23 Hubmann G, Thevelein JM, Nevoigt E. Natural and modified promotors for tailored metabolic engineering of the yeast Saccharomyces cerevisiae[J]//Mapelli V. Yeast Metabolic Engineering. Methods in Molecular Biology (Methods and Protocols). New York: Humana Press, 2014 24 Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Tong IL, Young RA. Revisiting global gene expression analysis [J]. Cell, 2012, 151: 476-482
[1]麻密,周达锋,许家喜,等.细胞分裂素基因(T-cyt)在转基因烟草中的表达及其对生长发育的影响[J].应用与环境生物学报,1996,2(01):1.
Ma Mi,Zhou Dafeng,Xu Jiaxi,et al.THE EXPRESSION OF T-cyt GENE IN TRANSGENIC TOBACCO AND REGULATION FOR PLANT DEVEOLPMENT[J].Chinese Journal of Applied & Environmental Biology,1996,2(05):1.
[2]郜瑞莹,王建龙.酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究[J].应用与环境生物学报,2007,13(06):848.
GAO Ruiying,et al..Kinetics and Equilibrium of Cu2+ Biosorption by Dried Biomass of Saccharomyces cerevisia[J].Chinese Journal of Applied & Environmental Biology,2007,13(05):848.
[3]张金辉,龙海,邓光兵,等.异表达启动子的克隆与活性检测[J].应用与环境生物学报,2008,14(03):328.
ZHANG Jinhui,et al..Cloning and Activity Assaying of Antherspecific Promoter in Rice[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):328.
[4]叶婷 姚陈 李茜茜 张红星 李 林.假单胞菌表达载体pYMB03的构建与性能分析[J].应用与环境生物学报,2008,14(04):528.
[5]李岩,王海燕,张义正.甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位[J].应用与环境生物学报,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
LI Yan,WANG Haiyan,ZHANG Yizheng.Localization of IbSUT1x Protein from Ipomoea batatas (L.) Lam in Yeast Cells[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):798.[doi:10.3724/SP.J.1145.2010.00798]
[6]段静波,李少贺,阮琨,等.盐生杜氏藻烯醇酶基因启动子的克隆分析及胁迫转录应答[J].应用与环境生物学报,2011,17(02):202.[doi:10.3724/SP.J.1145.2011.00202]
DUAN Jingbo,LI Shaohe,RUAN Kun,et al.Cloning of Promoter of the Enolase Gene from Duanliella salina and Its Transcriptional Response to Stress[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):202.[doi:10.3724/SP.J.1145.2011.00202]
[7]李宇浩,靳艳玲,龙飞,等.降粘酶在新鲜木薯发酵生产高浓度乙醇中的应用[J].应用与环境生物学报,2013,19(03):501.[doi:10.3724/SP.J.1145.2013.00501]
LI Yuhao,JIN Yanling,LONG Fei,et al.Using Viscosity Reducing Enzyme as Annexing Agent in the Very High Gravity Ethanol Fermentation with Fresh Cassava[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):501.[doi:10.3724/SP.J.1145.2013.00501]
[8]柯崇榕,吴毕莎,邵庆伟,等.酿酒酵母PDC1基因过表达菌株的构建[J].应用与环境生物学报,2013,19(04):704.[doi:10.3724/SP.J.1145.2013.00704]
KE Chongrong,WU Bisha,SHAO Qingwei,et al.Construction of Saccharomyces cescerevisiae Mutant with Overexpression of PDC1 Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):704.[doi:10.3724/SP.J.1145.2013.00704]
[9]涂毅,高秋强,鲍杰.外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达[J].应用与环境生物学报,2013,19(05):811.[doi:10.3724/SP.J.1145.2013.00811]
TU Yi,GAO Qiuqiang,BAO Jie.Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):811.[doi:10.3724/SP.J.1145.2013.00811]
[10]盛冠一,诸葛斌,宗红,等.高灵敏度铜抗性酿酒酵母表达系统的构建与应用[J].应用与环境生物学报,2014,20(03):357.[doi:10.3724/SP.J.1145.2014.12033]
SHENG Guanyi,ZHUGE Bin,ZONG Hong,et al.Construction and application of the high sensitivity expression system of copper-resistant Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):357.[doi:10.3724/SP.J.1145.2014.12033]