|本期目录/Table of Contents|

[1]石小保,王星淇,车婧如,等.甜橙CsHAC1基因克隆及其在响应柑橘黄龙病侵染过程中的表达[J].应用与环境生物学报,2020,26(02):217-225.[doi:10.19675/j.cnki.1006-687x.2019.07008]
 SHI Xiaobao,WANG Xingqi,CHE Jingru,et al.Cloning and expression analysis of the CsHAC1 gene in response to Huanglongbing (HLB) infection in sweet orange[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):217-225.[doi:10.19675/j.cnki.1006-687x.2019.07008]
点击复制

甜橙CsHAC1基因克隆及其在响应柑橘黄龙病侵染过程中的表达
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年02期
页码:
217-225
栏目:
研究论文
出版日期:
2020-04-25

文章信息/Info

Title:
Cloning and expression analysis of the CsHAC1 gene in response to Huanglongbing (HLB) infection in sweet orange
作者:
石小保王星淇车婧如杨莉伍俊为罗彬彬王梦鸽钟云程春振
1福建农林大学园艺植物生物工程研究所 福州 350002 2广东省农业科学院果树研究所 广州 510640
Author(s):
SHI Xiaobao1 WANG Xingqi1 CHE Jingru1 YANG Li1 WU Junwei1 LUO Binbin1 WANG Mengge1 ZHONG Yun2 & CHENG Chunzhen1
1Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
关键词:
甜橙组蛋白乙酰转移酶黄龙病互作蛋白表观遗传调控
Keywords:
sweet orange histone acetyltransferase Huanglongbing interacting protein epigenetic regulation
DOI:
10.19675/j.cnki.1006-687x.2019.07008
摘要:
为揭示甜橙组蛋白乙酰转移酶1基因(CsHAC1)在柑橘黄龙病(HLB)侵染过程中的响应机制,利用PCR和RT-PCR分别克隆该基因gDNA和cDNA序列,并进行系列生物信息学分析. 同时,还对CsHAC1互作蛋白进行预测并研究它们在感染HLB的柑橘中的表达情况. 结果显示,该基因编码序列(CDS)全长为5 307 bp,预测可编码含有1 768个氨基酸、无信号肽和跨膜结构的蛋白质. 亚细胞定位预测的结果显示CsHAC1主要定位在细胞核. CsHAC1含有ZnF_TAZ、PHD、HAT_KAT11、ZnF_ZZ等多个保守结构域,蛋白互作预测结果显示CsHAC1与ZC3H19L、SUMOs和HAM1L等蛋白存在互作关系. 启动子顺式作用元件预测结果显示CsHAC1启动子除含有大量光响应元件外还含有一些逆境(如低温、防御和应激、厌氧等)和激素(如脱落酸、生长素、水杨酸等)相关元件. 通过分析CsHAC1及其互作蛋白编码基因在感染黄龙病的柑橘根和叶片中的表达情况发现,CsHAC1在叶片中的表达受HLB诱导,且与HAM1L的表达呈显著负相关. 本研究结果表明CsHAC1可能和它的互作蛋白基因一起通过表观遗传调控参与柑橘对HLB侵染的响应. (图9 表3 参48)
Abstract:
To reveal the response mechanism of the Citrus sinensis histone acetyltransferase 1 (CsHAC1) gene during the citrus huanglongbing (HLB) infection process, the gDNA and cDNA sequences of the gene were cloned by PCR and RT-PCR followed by bioinformatics analyses. Protein-protein interaction (PPI) prediction was also performed. Additionally, expression and correlation analyses of CsHAC1 and genes encoding proteins that were predicted to interact with CsHAC1 were performed. The coding sequence (CDS) of CsHAC1 was bp in length, and it was predicted to encode a protein containing 1 768 amino acids with no signal peptides nor transmembrane structure. Subcellular localization prediction showed that CsHAC1 is mainly localized in the nucleus. CsHAC1 contains multiple conserved domains, such as ZnF_TAZ, PHD, HAT_KAT11, and ZnF_ZZ. PPI prediction revealed that CsHAC1 can interact with several proteins, such as ZC3H19L, SUMOs, and HAM1L. Besides a large number of photo-responsive elements, some stress-responsive (e.g., low temperature, defensive, or anaerobic), and phytohormone responsive (e.g., abscisic acid, auxin, and salicylic acid) elements were also identified in the CsHAC1 promoter by promoter cis-acting element prediction. Moreover, by analyzing the expression of CsHAC1 and its interacting protein-coding genes in sweet orange samples infected with HLB, we found that CsHAC1 expression was induced by HLB in leaves, and its expression was significantly and negatively correlated with that of HAM1L. CsHAC1, together with its interacting protein genes, contributes to the citrus response of HLB infection through epigenetic regulation.

参考文献/References:

1 Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation [J]. Bioessays, 1998, 20 (8): 615-626
2 Sterner DE, Berger SL. Acetylation of histones and transcription-related factors [J]. Microbiol Mol Biol Rev, 2000, 64 (2): 435-459
3 Struhl K. Histone acetylation and transcriptional regulatory mechanisms [J]. Genes Dev, 1998, 12 (5): 599-606
4 Lusser A, K?lle D, Loidl P. Histone acetylation: lessons from the plant kingdom [J]. Trends Plant Sci, 2001, 6 (2): 59-65
5 Zhang J, Zhong Q. Histone deacetylase inhibitors and cell death [J]. Cell Mol Life Sci, 2014, 71 (20): 3885-3901
6 Roth SY, Denu JM, Allis CD. Histone acetyltransferases [J]. Annu Rev Biochem, 2001, 70 (1): 81-120
7 Carrozza MJ, Utley RT, Workman JL, C?té J. The diverse functions of histone acetyltransferase complexes [J]. Trends Genet, 2003, 19 (6): 321-329
8 Mai A, Rotili D, Tarantino D, Nebbioso D, Castellano S, Sbardella G, Tini M, Altucci L. Identification of 4-hydroxyquinolines inhibitors of p300/CBP histone acetyltransferases [J]. Bioorg Med Chem, 2009, 19 (4): 1132-1135
9 Neuwald AF, Landsman D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein [J]. Trends Biochem Sci, 1997, 22 (5): 154-155
10 Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases [J]. Nucleic Acids Res, 2004, 32 (3): 959-976
11 Boycheva I, Vassileva V, Iantcheva A. Histone acetyltransferases in plant development and plasticity [J]. Curr Genomics, 2014, 15 (1): 28-37
12 Nallamilli BRR, Edelmann MJ, Zhong X, Tan F, Mujahid H, Zhang J, Nanduri B, Peng ZH. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa) [J]. PLoS ONE, 2014, 9 (2): e89283
13 Chen ZJ, Tian L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy [J]. BBA-Gene Struct Expr, 2007, 1769 (5-6): 295-307
14 Deng WW, Liu CY, Pei YX, Deng X, Niu LF, Cao XF. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis [J]. Plant Physiol, 2007, 143 (4): 1660-1668
15 Bordoli L, Netsch M, Lüthi U, Lutz W, Eckner R. Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins [J]. Nucleic Acids Res, 2001, 29 (3): 589-597
16 Li C, Xu J, Li J, Li QY, Yang HC. Involvement of Arabidopsis HAC family genes in pleiotropic developmental processes [J]. Plant Signal Behav, 2014, 9 (3): 426-35
17 肖旭峰, 张袆, 杨寅桂. 菜心组蛋白乙酰转移酶基因BrcuHAC1克隆与表达分析[J]. 核农学报, 2017, 31 (12): 2323-2331 [Xiao XF, Zhang W, Yang YG. Cloning and expression analysis of BrcuHAC1 histone acetyltransferase gene in Chinese flowering cabbage [J]. J Nucl Agric Sci, 2017, 31 (12): 2323-2331]
18 Li C, Xu J, Li J, Li QY, Yang HC. Involvement of Arabidopsis histone acetyltransferase HAC family genes in the ethylene signaling pathway [J]. Plant Cell Physiol, 2014, 55 (2): 426-435
19 An CP, Li L, Zhai QZ, You YR, Deng L, Wu FM, Chen R, Jiang HL, Wang H, Chen Q, Li CY. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin [J]. PNAS, 2017, 114 (42): E8930-E8939
20 Jin HS, Choi SM, Kang MJ, Yun SH, Kwon DJ, Noh YS, Noh B. Salicylic acid-induced transcriptional reprogramming by the HAC–NPR1–TGA histone acetyltransferase complex in Arabidopsis [J]. Nucleic Acids Res, 2018, 46 (22): 11712-11725
21 Singh P, Yekondi S, Chen PW, Tsai CH, Yu CW, Wu K, Zimmerli L. Environmental history modulates Arabidopsis pattern-triggered immunity in a HISTONE ACETYLTRANSFERASE1–dependent manner [J]. Plant Cell, 2014, 26 (6): 2676-2688
22 Xu J, Xu H, Liu Y, Wang X, Xu Q, Deng X. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process [J]. Front Plant Sci, 2015, 6: 607
23 程春振, 曾继吾, 钟云, 闫化学, 姜波, 钟广炎. 柑橘黄龙病研究进展[J]. 园艺学报, 2013, 40 (9): 1656-1668 [Cheng CZ, Zeng JW, Zhong Y, Yan HX, Jiang B, Zhong GY. Research progress on citrus Huanglongbing disease [J]. Acta Hortic Sin, 2013, 40 (9): 1656-1668]
24 Rosales R, Burns JK. Phytohormone changes and carbohydrate status in sweet orange fruit from Huanglongbing-infected trees [J]. J Plant Growth Regul, 2011, 30 (3): 312-321
25 Chen Q, Xu X, Xu D, Zhang H, Zhang C, Li G. WRKY18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar [J]. Plant Physiol, 2019, 180: 2212-2226
26 Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Chen J, Zhu AD, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng WF, Guo F, Cao H, Yang XM, Xu XW, Cheng YJ, Liu JH, Luo OJ, Tang ZH, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan YJ. The draft genome of sweet orange (Citrus sinensis) [J]. Nat Genet, 2013, 45 (1): 59-66
27 Zhong Y, Cheng C, Jiang NH, Jiang B, Zhang YY, Wu B, Zhong GY. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection [J]. PLoS ONE, 2015, 10 (6): e0126973
28 Zhong Y, Cheng C, Jiang B, Jiang N, Zhang Y, Hu M, Zhong G. Digital gene expression analysis of Ponkan mandarin (Citrus reticulata Blanco) in response to Asia citrus psyllid-vectored Huanglongbing infection [J]. Int J Mol Sci, 2016, 17 (7): 1063
29 Kalkhoven E. CBP and p300: HATs for different occasions [J]. Biochem Pharmacol, 2004, 68 (6): 1145-1155
30 Liu X, Luo M, Zhang W, Zhao J, Zhang J, Wu K, Tian L, Duan J. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression [J]. BMC Plant Biol, 2012, 12 (1): 145
31 Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A. Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA [J]. Plant Physiol Biochem, 2010, 48 (2-3): 98-107
32 Dahlin JL, Chen X, Walters MA, Zhang ZG. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: lessons learned from Rtt109 histone acetyltransferases [J]. Crit Rev Biochem Mol, 2015, 50 (1): 31-53
33 常锐, 谈娟, 王荣敏, 陈启民, 耿运琪,乔文涛. 重组p300组蛋白乙酰转移酶结构域的表达及应用[J]. 中国生物化学与分子生物学报, 2011, 27 (5): 452-457 [Chang R, Tan J, Wang RM,Chen QM, Geng YQ, Qiao WT. Expression and application of recombinant p300 histone acetyltransferase domain [J]. Chin J Biochem Mol Biol, 2011, 27 (5): 452-457]
34 Turner BM. Histone acetylation and an epigenetic code [J]. Bioessays, 2000, 22 (9): 836-845
35 Klug A. Zinc finger peptides for the regulation of gene expression [J]. J Mol Biol, 1999, 293 (2): 215-218
36 Ponting CP, Blake DJ, Davies KE, Kendrick J, John SJ, Winder SJ. ZZ and TAZ: New putative zinc fingers in dystrophin and other proteins [J]. Trends Biochem Sci, 1996, 21 (1): 11-13
37 Ragvin A , Valvatne H , Erdal S , ?rskog V, Tufteland KR, Breen K, ?yan AM, Eberharter A, Gibson TJ, Becker PB, Aasland R. Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300 [J]. J Mol Biol, 2004, 337 (4): 773-788
38 Bordoli L, Hüsser S, Lüthi U, Netsch M, Osmani H, Eckner R. Functional analysis of the p300 acetyltransferase domain: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity [J]. Nucleic Acids Res, 2001, 29 (21): 4462-4471
39 粱晓婷. 柑橘黄龙病的症状表现与矿质营养关系初步研究[D]. 广东: 华南农业大学, 2009[Liang XT. Preliminary study on the relationship between the symptoms and mineral nutrition of citrus Huanglongbing disease [D]. Guangzhou: South China Agricultural University, 2009]
40 Sachs MD, Ramamurthy M, Van Der Poel H, Wickham TJ, Lamfers M, Gerritsen W, Chowdhury W, Li Y, Schoenberg MP, Rodriguez R. Histone deacetylase inhibitors upregulate expression of the coxsackie adenovirus receptor (CAR) preferentially in bladder cancer cells [J]. Cancer Gene Ther, 2004, 11 (7): 477-486
41 Brüning A, Runnebaum IB. CAR is a cell–cell adhesion protein in human cancer cells and is expressionally modulated by dexamethasone, TNFα, and TGFβ [J]. Gene Ther, 2003, 10 (3): 198-205
42 Kortenhorst MSQ, Isharwal S, Van Diest PJ, Chowdhury WH, Marlow C, Carducci MA, Rodriguez R, Veltri RW. Valproic acid causes dose-and time-dependent changes in nuclear structure in prostate cancer cells in vitro and in vivo [J]. Mol Cancer Ther, 2009, 8 (4): 802-808
43 Thomas T, Voss AK. The diverse biological roles of MYST histone acetyltransferase family proteins [J]. Cell Cycle, 2007, 6 (6): 696-704
44 Latrasse D, Benhamed M, Henry Y, Domenichini S, Kim W, Zhou DX, Delarue M. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis [J]. BMC Plant Biol, 2008, 8 (1): 121
45 Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation [J]. Plant J, 2007, 52 (4): 615-626
46 Pontier D, Picart C, Roudier F, Garcia D, Lahmy S, Azevedo J, Alart E, Laudié M, Karlowski WM, Cooke R, Colot V, Voinnet O, Lagrange T. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis [J]. Mol Cell, 2012, 48 (1): 121-132
47 Etxeberria E, Gonzalez P, Achor D, Albrigo G. Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees [J]. Physiol Mol Plant P, 2009, 74 (1): 76-83
48 Heisel TJ, Li CY, Grey KM, Gibson SI. Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis [J]. Front Plant Sci, 2013, 4: 245

更新日期/Last Update: 2020-04-25