|本期目录/Table of Contents|

[1]张伶俐,孙毅,陈锦,等.产甲烷菌抑制剂对便秘小鼠结肠微生物菌群及代谢产物的影响[J].应用与环境生物学报,2020,26(03):506-511.[doi:10.19675/j.cnki.1006-687x.2019.07005]
 ZHANG Lingli,SUN Yi,CHEN Jin & WANG Xinfeng.Effects of methanogen inhibitor on the composition of gut microbiota and short-chain fatty acids in mice with constipation[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):506-511.[doi:10.19675/j.cnki.1006-687x.2019.07005]
点击复制

产甲烷菌抑制剂对便秘小鼠结肠微生物菌群及代谢产物的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
506-511
栏目:
研究论文
出版日期:
2020-06-25

文章信息/Info

Title:
Effects of methanogen inhibitor on the composition of gut microbiota and short-chain fatty acids in mice with constipation
作者:
张伶俐孙毅陈锦王新峰
1汕头大学医学院实验动物中心 汕头 515041 2石河子大学动物科技学院 石河子 832000
Author(s):
ZHANG Lingli1? SUN Yi1 CHEN Jin1 & WANG Xinfeng2?
1Experimental Animal Center, Medical College, Shantou University, Shantou 515041, China 2College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
关键词:
产甲烷菌抑制剂便秘肠道微生物短链脂肪酸
Keywords:
methanogen inhibitor constipation gut microbiota short-chain fatty acids
DOI:
10.19675/j.cnki.1006-687x.2019.07005
摘要:
为研究产甲烷菌抑制剂(溴氯甲烷)对便秘小鼠的肠道微生物菌群及代谢产物的影响,选取60只5周龄雄性KM小鼠,随机分为3组:对照组、便秘组、甲烷抑制剂干预组. 试验结束,采集小鼠结肠内容物通过高通量测序技术分析肠道菌群;气相色谱分析结肠内容物中短链脂肪酸含量;Real-time PCR技术分析肠道总菌及产甲烷菌数量变化. 结果表明,溴氯甲烷处理后小鼠粪便颗粒数及粪便含水率显著增加,结肠内容物Lactobacillus及Streptococcus的相对丰度显著增加,Lachnospiraceae NK4a136 group,Lachnospiraceae_uncultured,Bacteroides,Muribaculaceae_norank及Staphylococcus的相对丰度显著降低,结肠菌群结构发生显著变化,产甲烷菌数量显著降低,但对总菌数量无显著影响. 溴氯甲烷处理组总短链脂肪酸含量显著降低. 本研究表明便秘小鼠在甲烷抑制剂干预后,结肠菌群结构及代谢产物均受到显著影响. (图7 表2 参22)
Abstract:
In this study, we aimed to evaluate the effects of a methanogen inhibitor, Bromochloromethane (BCM), on the composition of gut microbiota and short-chain fatty acids in mice with constipation induced by loperamide. Sixty Kunming mice were randomly divided into three groups as follows: normal control group, constipation group, and BCM group. At the end of the experiment, the colonic microbiota composition was analyzed using pyro-sequencing of 16S rRNA genes and real-time PCR, and the metabolites were further profiled through gas chromatography. The results revealed that the BCM group had significantly altered bacterial community composition. BCM treatment significantly increased the defection number and the water content of the feces. BCM treatment increased the abundance of Lactobacillus and Streptococcus, while decreased the abundance of Lachnospiraceae NK4a136, Lachnospiraceae_uncultured, Bacteroides, Muribaculaceae_norank, and Staphylococcus in the colon. BCM treatment also decreased the abundance of methanogens, but did not affect the total colonic bacterial counts. BCM treatment decreased the concentration of short chain fatty acids. In conclusion, BCM treatment significantly altered the microbiota and metabolite profile in the colon of mice with constipation.

参考文献/References:

1 Lee KM, Paik CN, Chung WC, Yang JM, Choi MG. Breath methane positivity is more common and higher in patients with objectively proven delayed transit constipation [J]. Eur J Gastroen Hepat, 2013, 25 (6): 726-732
2 Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders [J]. Gastroen, 2006, 130 (5):1480-1491
3 Rana SV, Sharma S, Sinha SK, Kaur H, Sikander A, Singh K. Incidence of predominant methanogenic flora in irritable bowel syndrome patients and apparently healthy controls from North India [J]. Digest Dis Sci, 2009, 54 (1): 132-135
4 Li T, Lu X, Yang X. Stachyose-enriched α-galacto-oligosac-charides regulate gut microbiota and relieve constipation in mice [J]. J Agric Food Chem, 2013, 61 (48): 11825-11831
5 Kim G, Deepinder F, Morales W, Hwang L, Weitsman S, Chang C, Gunsalus R, Pimentel M. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath [J]. Digest Dis Sci, 2012, 57 (12): 3213-3218
6 Lee KN, Lee OY, Koh DH, Sohn W, Lee SP, Jun DW, Lee HL, Yoon BC, Choi HS, Hahm JS. Association between symptoms of irritable bowel syndrome and methane and hydrogen on lactulose breath test [J]. J Korean Med Sci, 2013, 28 (6): 901-907
7 Hu TG, Wen P, Fu HZ, Lin GY, Liao ST, Zhou YX. Protective effect of mulberry (Morus atropurpurea) fruit against diphenooxylate-induced constipation in mice through the modulation of gut microbiota [J]. Food Funct, 2019, 10 (3): 1513-1528
8 Wang L, Hu L, Xu Q, Jing T, Fang S, Wang G, Zhao J, Zhang H, Chen W. Bifidobacteria exert species-specific effects on constipation in BALB/c mice [J]. Food Funct, 2017, 8 (10): 3587-3600
9 O’Mahony L, Mccarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullyan GC, Klely B, Collins JK, Shanahan F, Quigley EM. Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles [J]. Gastroen, 2005, 28 (3): 541-551
10 Wood JM, Kennedy FS, Wolfe RS. The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12 [J]. Biochem,1968, 7 (5): 1707-1713
11 Chalupa W. Manipulating rumen fermentation [J]. J Anim Sci, 1977, 45 (3): 585- 599
12 罗玉衡.抑制消化道产甲烷古菌对SD大鼠脂质代谢的影响[D].南京: 南京农业大学博士论文, 2010 [Luo YH. Inhibition of intestinal methanogens and its effect on adipose metabolism in Sprague Dawley (SD) rat model [D]. Nanjing: Nanjing Agricultural University, 2010]
13 Zoetendal EG, Akkermans ADL, de Vos WM.Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host specific communities of active bacteria [J]. Appl Environ Microbiol, 1998, 64 (10): 3854-3859
14 Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane [J]. FEMS Microbiol Ecol, 2007, 62 (3): 313 -322
15 Suzuki MT, Taylor LT, DeLong EF. Quantitative analysis of smallsubunit rRNA genes in mixed microbial populations via 5’-nuclease assays [J]. Appl Environ Microbiol, 2000, 66 (11): 4605-4614
16 龙黎明, 毛胜勇, 苏勇. 一株瘤胃源乳酸利用菌的分离鉴定及其体外代谢特性[J]. 微生物学报, 2008,48 (12): 1571-1577 [Long LM, Mao SY, Su Y. Isolation and in vitro metablic characterization of a lactate-utilizing bacterium from goat rumen [J]. Acta Microbiol Sin, 2008, 48 (12): 1571-1577]
17 Strocchi A, Levitt MD. Maintaining intestinal H2 balance: credit the colonic bacteria [J]. Gastroenterology, 1992, 102 (4): 1424-1426
18 Stams AJ. Metabolic interactions between anaerobic bacteria in methanogenic environments [J]. Anton Leeuw, 1994, 66 (1-3): 271-294
19 Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host archaeal bacterial mutualism [J]. PNAS, 2006, 103 (26): 10011-10016
20 Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon [J]. FEMS Microbiol Lett, 2002, 217 (2): 133-139
21 Liu S, Li E, Sun Z, Fu D, Duan G, Jiang M, Yu Y, Mei L, Yang P, Tang Y, Zhang P. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder [J]. Sci Rep, 2019, 9 (1): 287
22 Ou Y, Chen S, Ren F, Zhang M, Ge S, Guo H, Zhang H, Zhao L. Lactobacillus casei strain shirota alleviates constipation in adults by increasing the pipecolinic acid level in the gut [J]. Front Microbiol, 2019, 10 (1): 324

更新日期/Last Update: 2020-06-25