|本期目录/Table of Contents|

[1]郭艳飞,黄勇霖,张苗苗,等.高浓度氯化镍胁迫下酿酒酵母组蛋白H4K5去乙酰化调控金属硫蛋白基因的表达[J].应用与环境生物学报,2020,26(03):551-557.[doi:10.19675/j.cnki.1006-687x.2019.06031]
 GUO Yanfei,HUANG Yonglin,ZHANG Miaomiao,et al.Histone H4K5 deacetylation of histone regulates the expression of metallothionein genes under high concentration of nickel chloride in Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):551-557.[doi:10.19675/j.cnki.1006-687x.2019.06031]
点击复制

高浓度氯化镍胁迫下酿酒酵母组蛋白H4K5去乙酰化调控金属硫蛋白基因的表达
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
551-557
栏目:
研究论文
出版日期:
2020-06-25

文章信息/Info

Title:
Histone H4K5 deacetylation of histone regulates the expression of metallothionein genes under high concentration of nickel chloride in Saccharomyces cerevisiae
作者:
郭艳飞黄勇霖张苗苗蔡禄赵秀娟
内蒙古科技大学生命科学与技术学院 包头 014010
Author(s):
GUO Yanfei HUANG Yonglin ZHANG Miaomiao CAI Lu & ZHAO Xiujuan?
School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
关键词:
金属硫蛋白组蛋白乙酰化表观遗传镍胁迫
Keywords:
metallothionein histone acetylation epigenetics nickel stress
DOI:
10.19675/j.cnki.1006-687x.2019.06031
摘要:
金属硫蛋白(MTs)具有重金属解毒功能. 组蛋白乙酰化/去乙酰化是表观遗传因子之一,并且参与基因的表达调控. 然而,组蛋白乙酰化/去乙酰化在真核生物响应氯化镍胁迫过程中对金属硫蛋白基因的调控作用还不清楚. 以酿酒酵母突变株H4K5R(该菌株模拟组蛋白H4赖氨酸5去乙酰化的状态)为试验材料,采用流式细胞术检测不同浓度氯化镍处理下酵母细胞的死亡率,发现突变菌株的生长状态和细胞存活率明显优于野生型菌株BY4741;qRT-PCR检测5 mmol/L氯化镍处理后,酿酒酵母金属硫蛋白基因Cup1、Crs5、Sod1及转录因子Cup2的表达量. 结果显示,高浓度氯化镍胁迫下,野生型菌株中基因的表达水平均显著降低;耐镍菌株H4K5R中,金属硫蛋白基因Cup1表达量上调7.4倍,Crs5表达量显著下调2.56倍,Sod1表达量不显著上调,转录因子Cup2表达量上调3.81倍,并且表达水平均显著高于镍处理后的BY4741. 本研究表明突变菌株H4K5R具有较强的镍耐受性;镍胁迫下,突变菌株中金属硫蛋白Cup1与转录因子Cup2的表达变化趋势与BY4741相反,说明组蛋白H4K5的去乙酰化可能通过改变基因表达模式,从而在酿酒酵母响应镍胁迫时发挥重要的调控作用. (图6 表1 参38)
Abstract:
Metallothioneins (MTs) have a function in heavy metal detoxification. One of the known epigenetic factors is histone acetylation/deacetylation, which plays an important role in gene expression regulation. However, it remains unclear whether the expression of MTs in eukaryotes is regulated by histone acetylation/deacetylation under nickel stress. In this study, Saccharomyces cerevisiae mutant H4K5R (the strain mimics the state of histone H4 lysine 5 deacetylation) was used as the experimental model. The death rate of cells under different concentrations of nickel chloride was detected using flow cytometry. We found that the growth and viability of the mutant strain were higher than those of the wild type strain under a high concentration of nickel chloride. The changes in the transcriptional levels of MTs in H4K5-deacetylation S. cerevisiae strain under nickel stress were examined. The levels of expression of MT genes, Cup1, Crs5, Sod1, and Cup2 transcription factors were quantified using qRT-PCR in the cells grown with 5 mmol/L nickel chloride. The results showed that the expression level of genes in wild-type strains was significantly reduced after nickel chloride treatment, but in the resistant strain H4K5R, the expression of MT gene Cup1 was up-regulated by 7.4 fold, the expression of Crs5 was down-regulated by 2.56 fold, the expression of Sod1 was not significantly up-regulated, and the expression of transcription factor Cup2 was up-regulated by 3.81 fold, after nickel chloride treatment. Furthermore, the expression levels of these genes in H4K5R were significantly higher than those in the wild type after nickel chloride treatment. Thus, the following conclusions were reached: a) the mutant H4K5R has strong Ni2+ tolerance, and there is significant difference in the extent of suppression between the wild type and the mutant strains upon treatment with 5 mmol/L nickel chloride; b) the changing trends of MT genes, Cup1 and Cup2, of H4K5R were opposite to that of BY4741, which indicates that the deacetylation of histone H4K5 regulates the expression pattern of MT genes and their transcription factor Cup2 in S. cerevisiae in response to nickel chloride stress.

参考文献/References:

1 Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium [J]. Chem Res Toxicol, 2008, 21 (1): 28-44
2 Sunderman FW. Nickel carcinogenesis [J]. Dis Chest, 1968, 533 (1): 67-97
3 Stannard L, Doak SH, Doherty A, Jenkins GJ. Is nickel chloride really a non-genotoxic carcinogen? [J]. Basic Clin Pharmacol Toxicol, 2017, 121 (3): 10-15
4 Broday L, Peng W, Kuo MH, Salnikow K, Zoroddu M, Costa M. Nickel compounds are novel inhibitors of histone H4 acetylation [J]. Cancer Res, 2000, 60 (2): 238-241
5 Gelato KA, Fischle W. Role of histone modifications in defining chromatin structure and function [J]. Biol Chem, 2008, 389 (4): 353-363
6 Bernstein BE, Tong JK, Schreiber SL. Genomewide studies of histone deacetylase function in Saccharomyces cerevisiae [J]. PNAS, 2000, 97 (25): 13708-13713
7 Kishkevich A, Cooke SL, Harris MRA, de Bruin RAM. Gcn5 and Rpd3 have a limited role in the regulation of cell cycle transcripts during the G1 and S phases in Saccharomyces cerevisiae [J]. Sci Rep, 2019, 9 (1): 10686
8 Spannhoff A, Kim YK, Raynal JM, Su MB, Zhou YY, Li J, Castellano S, Sbardella G, Issa JP, Bedford MT. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees [J]. EMBO Rep, 2011, 12 (3): 238-243
9 Dai J, Hyland E M, Yuan DS, Huang H, Bader JS, Boeke JD. Probing nucleosome function: a highly versatile library of synthetic Histone H3 and H4 mutants [J]. Cell, 2008, 134 (6): 1066-1078
10 Xie XX, Ma YF, Wang QS, Chen ZL, Liao RR, Pan YC. Yeast CUP1 protects HeLa cells against copper-induced stress [J]. Brazilian J Med Biol Res, 2015, 48 (7): 616-621
11 Butt TR, Sternberg E, Herd J, Crooke ST. Cloning and expression of a yeast copper metallothionein gene [J]. Gene, 1984, 27 (1): 23-33
12 Bofill R, Capdevila M, Atrian S. Independent metal-binding features of recombinant metallothioneins convergently draw a step gradation between Zn- and Cu-thioneins [J]. Metallomics, 2009, 1 (3): 229-234
13 Hodgins-Davis A, Adomas AB, Warringer J, Townsend JP. Abundant gene-by-environment interactions in gene expression reaction norms to copper within Saccharomyces cerevisiae [J]. Genome Biol Evol, 2012, 4 (11): 1061-79
14 Mehta GD, Ball DA, eriksson pr, chereji rv, clark dj, mcnally jg, karpova ts. single-molecule analysis reveals linked cycles of RSC chromatin remodeling and ace1p transcription factor binding in yeast [J]. Mol Cell, 2018, 72 (5): 875-887
15 Song MO, Li J, Freedman JH. Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper [J]. Physiol Genomics, 2009, 38 (3): 386-401
16 Letelier ME, Lepe AM, Faundez M, Salazar J, Marín R, Aracena P, Speisky H. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity [J]. Chem-Biol Interact, 2005, 151 (2): 71-82
17 李维维, 顿宝庆, 王智, 曲娟娟. 一种改良的热酚法高效快速提取酿酒酵母总RNA[J]. 生物技术通报, 2012 (12): 163-166 [Li WW, Dun BQ, Wang A, Qu JJ. A modified method for the efficient and fast extraction of total RNA from Saccharomyces cerevisiae with hot-phenol [J]. Biotechnol Bull, 2012 (12): 163-166]
18 Zoroddu MA, Schinocca L, Kowalik-Jankowska T, Kozlowski H, Salnikow K, Costa M. Molecular mechanisms in nickel carcinogenesis: modeling Ni (II) binding site in histone H4 [J]. Environ Health Perspect, 2002, 110 (suppl 5): 719-723
19 Kasprzak KS, Sunderman FW, Salnikow K. Nickel carcinogenesis [J]. Mutat Res, 2003, 533 (1-2): 67-97
20 Karaczyn AA, Filip Golebiowski A, Kasprzak KS. Truncation, deamidation, and oxidation of histone H2B in cells cultured with nickel (II) [J]. Chem Res Toxicol, 2005, 18 (12): 1934-1942
21 Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium [J]. Chem Res Toxicol, 2008, 21 (1): 28-44
22 Karaczyn AA, Golebiowski F, Kasprzak KS. Ni (II) affects ubiquitination of core histones H2B and H2A [J]. Exp Cell Res, 2006, 312 (17): 3252-3259
23 Fragou D, Fragou A, Kouidou S, Njau S, Kovatsi L. Epigenetic mechanisms in metal toxicity [J]. Toxicol Mech Methods, 2011, 21 (4): 343-352
24 Ke Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histone modifications and transgene silencing by nickel chloride [J]. Carcinogenesis, 2006, 27 (7): 1481-1488
25 Kang J, Zhang Y, Chen J, Chen H, Lin C, Wang Q, Ou Y. Nickel-induced histone hypoacetylation: the role of reactive oxygen species [J]. Toxicol Sci, 2003, 74 (2): 279-286
26 盛冠一, 诸葛斌, 宗红, 陆信曜, 方慧英, 宋健, 诸葛健. 高灵敏度铜抗性酿酒酵母表达系统的构建与应用[J]. 应用与环境生物学报, 2014, 20 (3): 357-362 [Sheng GY, Zhu ge B, Zong H, Lu XY, Fang HY, Song J, Zhu ge J. Construction and application of the high sensitivity expression system of copper-resistant Saccharomyces cerevisiae [J]. Chin J Appl Environ Biol, 2014, 20 (3): 357-362]
27 Culotta VC, Howard WR, Liu XF. CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae [J]. J Biol Chem, 1994, 269 (41): 25295-25302
28 Furukawa Y, Torres AS, O’Halloran TV. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS [J]. EMBO J, 2004, 23 (14): 2872-2881
29 Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells [J]. Eukaryot Cell, 2004, 3 (1): 1-13
30 Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase [J]. PNAS, 1993, 90 (17): 8013-8017
31 Liu XD, Thiele DJ. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription [J]. Genes Dev, 1996, 10 (5): 592-603
32 Buchman C, Skroch P, Welch J, Fogel S, Karin M. The Cup2 gene product, regulator of Saccharomyces. cerevisiae metallothionein expression, is a copper-activated DNA-binding protein [J]. Mol Cell Biol, 1989, 9 (9): 4091-4095
33 Okuyama M, Kobayashi Y, Inouhe M, Tohoyama H, Joho M. Effect of some heavy metal ions on copper-induced metallothionein synthesis in the yeast Saccharomyces cerevisiae [J]. Biometals, 1999, 12 (4): 307-314
34 Wang YF, Shyu HW, Chang YC, Tseng WC, Huang YL, Lin KH, Chou MC, Liu HL, Chen CY. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway [J]. Toxicol Appl Pharmacol, 2012, 259 (2): 177-186
35 Ming LJ, Valentine JS. Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni2+- and other metal-ion-substituted wild-type copper-zinc superoxide dismutases [J]. J Biol Inorg Chem, 2014, 19 (4-5): 647-657
36 Kim FJ, Kim HP, Hah YC, Roe JH. Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor [J]. Eur J Biochem, 2010, 241 (1): 178-185
37 Gralla EB, Thiele DJ, Silar P, Valentine JS. ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene [J]. PNAS, 1991, 88 (19): 8558-8562
38 Montllor-Albalate C, Colin AE, Chandrasekharan B, Bolaji N, Andersen JL, Wayne Outten F, Reddi AR. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae [J]. Redox Biol, 2019, 21: 101064

相似文献/References:

[1]方彩云,谢福莉,付玮,等.利用细菌表面展示技术构建镉耐受性的重组根瘤菌[J].应用与环境生物学报,2011,17(01):82.[doi:10.3724/SP.J.1145.2011.00082]
 FANG Caiyun,XIE Fuli,FU Wei & LI Youguo.Construction of Recombinant Rhizobial Strains with Enhanced Tolerance to Cadmium Using Bacterial Cell Surface Display[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):82.[doi:10.3724/SP.J.1145.2011.00082]
[2]洪美玲,李春瑜,王力军,等.急性铜胁迫对海陆蛙蝌蚪抗氧化效应及金属解毒能力的影响[J].应用与环境生物学报,2015,21(03):494.[doi:10.3724/SP.J.1145.2014.11012]
 HONG Meiling,LI Chunyu,WANG Lijun,et al.Effect of acute copper stress on antioxidant and metal detoxification ability of the tadpole of crab eating frog (Fejervarya cancrivora)[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):494.[doi:10.3724/SP.J.1145.2014.11012]

更新日期/Last Update: 2020-06-25