|本期目录/Table of Contents|

[1]刘娟,黎黎,陆柄辰,等.温度调控植物开花研究进展[J].应用与环境生物学报,2020,26(03):713-721.[doi:10.19675/j.cnki.1006-687x.2019.06011]
 LIU Juan,LI Li,LU Bingchen,et al.Research progress on the temperature-regulated flowering of plants[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):713-721.[doi:10.19675/j.cnki.1006-687x.2019.06011]
点击复制

温度调控植物开花研究进展
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
713-721
栏目:
综述
出版日期:
2020-06-25

文章信息/Info

Title:
Research progress on the temperature-regulated flowering of plants
作者:
刘娟黎黎陆柄辰邓朴艾辛
湖南农业大学园艺园林学院 长沙 410128
Author(s):
LIU Juan LI Li LU Bingchen DENG Pu & AI Xin?
College of Horticulture and Landscape,Hunan Agricultural University,Changsha 410128, China
关键词:
开花温度传感春化途径分子机理环境温度途径
Keywords:
flowering temperature sensing vernalization pathway molecular mechanism environmental temperature pathway
DOI:
10.19675/j.cnki.1006-687x.2019.06011
摘要:
开花是植物生命周期中必不可少的阶段,它决定了植物能否顺利繁殖后代,同时也与人类生活息息相关. 植物开花受温度、光照强度、日照长短等外界环境的影响,其中温度的调控尤为重要. 近几十年来,国内外学者对温度诱导植物开花的分子机理的研究不断深入,研究结果日新月异,揭示了温度调控植物开花的多条途径. 本文系统总结了温度调控植物开花(主要包括温度传感、春化和环境温度途径)的研究进展,主要对近期的研究热点温度传感器、开花促进因子、开花抑制因子进行了详细阐述. (1)植物主要通过响应温度的组蛋白修饰、冷诱导转录因子以及温度感应的关键基因来感知温度,Rea L在已知的春化和环境温度途径的基础上提出了4条温度传感途径,即以月(L)、以天(S)、以小时(C)以及昼夜时钟(D)为单位的路径,简称LSCD调节模型,揭示了VIN3表达中的分布式热传感器输入. (2)主要的开花抑制因子有SVP、FLM-β、FLC、FRI-C复合物、SPEN3、KHD1、miR156、PEP1和PEP2,这些负性调节因子的活性被一组促花因子抵消,这些促花因子包括PIF4(在SD条件下)、FCA、PRC2复合物、COOLAIR、COLDAIR、COLDWRAP、miR172和FT. (3)FLC的表达受FLC的反义转录物COOLAIR的抑制,并由COLDAIR和COLDWRAP来维持这种抑制,且FLC还受FT及互作蛋白FD的负反馈调节. 最后对该领域的研究成果和发展进行了讨论与展望,认为未来对开花机制的研究应着重从温度依赖的选择性剪接、蛋白质修饰和降解或核小体周围的DNA包裹、对自然条件下环境温度的长期和短期变化作出反应和晚抽薹基因等方面来进行. (图2 参90)
Abstract:
Flowering is an indispensable stage in the life cycle of plants. It determines whether a plant can successfully produce offspring and is closely related to human life. Plant flowering is under the control of environmental factors, such as temperature, light intensity, and day length, among which temperature regulation is particularly important. In recent decades, scholars at home and abroad have studied the molecular mechanisms of plant flowering regulated by temperature in depth, and the research results have seemingly changed with each passing day, revealing many paths of temperature-regulated plant flowering. In this review, we systematically summarize the research progress of temperature-regulated plant flowering, including temperature sensing, vernalization, and environmental temperature pathways, and describe recent research hotspots regarding temperature sensors, flowering promoting factors, and flowering suppressing factors in detail. First, recent studies revealed that plants primarily flower via multiple key genes associated with histone modifications, cold-induced transcription factors, or temperature-sensitive genes that respond to temperature signals. Real et al. proposed four temperature sensing pathways based on vernalization and ambient temperature pathways: months (L), days (S), hours (C), and day and night clocks (D). These pathways are collectively referred to as the LSCD adjustment model, which reveals the distributed thermal sensor input in VIN3 expression. Second, the main flowering inhibitors include SVP, FLM-β, FLC, the FRI-C complex, SPEN3, KHD1, miR156, PEP1, and PEP2. The activity of these negative regulators is offset by a group of flower-promoting factors. The flower-promoting factors include PIF4 (under SD conditions), FCA, the PRC2 complex, COOLAIR, COLDAIR, COLDWRAP, miR172, and FT. Third, the expression of FLC is inhibited by the FLC antisense transcript COOLAIR, and this inhibition is maintained by COLDAIR and COLDWRAP, and FLC is also regulated by the negative feedback of FT and the interacting protein FD. At the end of this paper, we discuss future processes that should focus on flowering mechanisms that result from temperature-dependent alternative splicing, protein modification and degradation, or DNA encapsulation around nucleosomes. More importantly, more attention must be paid to genes that respond to long-term and short-term temperature changes under natural conditions and genes that are related to late twitching.

参考文献/References:

1 Koornneef M, Alonsoblanco C, Vreugdenhil D. Naturally occurring genetic variation in arabidopsis thaliana [J]. Annu Rev Plant Biol, 2004, 55 (1): 141
2 Roux F, Touzet P, Cuguen J, Le Corre V. How to be early flowering: an evolutionary perspective [J]. Trends Plant Sci, 2006, 11 (8): 375-381
3 Hedhly A. Sensitivity of flowering plant gametophytes to temperature fluctuations [J]. Environ Exp Bot, 2011, 74 (12): 9-16
4 Anusha S, Markus S. Regulation of flowering time: all roads lead to Rome [J]. Cell Mol Life Sci, 2011, 68 (12): 2013-2037
5 Leonie V, Angenent GC, Immink RGH. Research on floral timing by ambient temperature comes into blossom [J]. Trends Plant Sci, 2014, 19 (9): 583-591
6 Airoldi CA, Mckay M, Davies B. MAF2 is regulated by temperature-dependent splicing and represses flowering at low temperatures in parallel with FLM [J]. PLoS ONE, 2015, 10 (5): 1-15
7 Dong X, Huange W, Ram Kumar B, Lin K, Hou X, Bonnema G. Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach [J]. Plant Physiol, 2014, 164 (3): 1309-1325
8 Kim DH, Doyle MR, Sung SB, Amasino RM. Vernalization: winter and the timing of flowering in plants [J]. Annu Rev Cell Dev Biol, 2009, 25 (1): 277
9 Wigge PA. Ambient temperature signalling in plants [J]. Curr Opin Plant Biol, 2013, 16 (5): 661-666
10 Zhang JY, Li XM, Lin HX, Chong K. Crop improvement through temperature resilience [J]. Annu Rev Plant Biol, 2019, 70: 753-780
11 Xiao J, Xu S, Li C, Xu Y, Xing L, Niu Y. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat [J]. Nat Commun, 2014, 5 (2): 4572
12 Sunchung P, Chin-Mei L, Doherty CJ, Gilmour SJ, Kim YS. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network [J]. Plant J, 2015, 82 (2): 193-207
13 Vogel JT, Zarka DG, Buskirk HAV, Fowler SG. Roles of CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis [J]. Plant J, 2005, 41 (2): 17
14 Ma Y, Dai XY, Xu YY, Luo W, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HH, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice [J]. Cell, 2015, 160: 1209-21
15 Doherty CJ, Buskirk HA, Myers SJ, Thomashow MF. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance [J]. Plant Cell, 2009, 21 (3): 972-984
16 Bond DM, Dennis ES, Pogson BJ, Finnegan, EJ. Histone Acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response [J]. Mol Plant, 2009, 2 (4): 724-737
17 Lucia FD, Crevillen P, Jones AME, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization [J]. PNAS, 2008, 105 (44): 16831-16836
18 Finnegan E, Jean, Bond DM, Buzas DM, Goodrich J, Helliwell CA, Tamada Y. Polycomb proteins regulate the quantitative induction of VERNALIZATION INSENSITIVE 3 in response to low temperatures [J]. Plant J, 2011, 65 (3): 382-391
19 Duncan S, Holm S, Questa J, Irwin J, Grant A, Dean C. Seasonal shift in timing of vernalization as an adaptation to extreme winter [J]. Elife, 2015, 4: e06620
20 Wollenberg AC, Amasino RM. Natural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thaliana [J]. Plant Cell Environ, 2012, 35 (12): 2181-2191
21 Hepworth J, Antoniou-Kourounioti RL, Bloomer RH, Selga C, Berggren K, Cox D, Collier Harris BR, Irwin JA, Holm S, S?ll T, Howard M, Dean C. Absence of warmth permits epigenetic memory of winter in Arabidopsis [J]. Nat Commun, 2018, 9 (1): 639
22 Gendall AR, Levy YY, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis [J]. Cell, 2001, 107 (4): 525-35
23 Helliwell CA, Robertson M, Finnegan EJ, Buzas DM, Dennis ES, Blazquez MA. Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts [J]. PLoS ONE, 2011, 6 (6): 240-247
24 Kim DH, Sung S. The binding specificity of the PHD-Finger domain of VIN3 moderates vernalization response [J]. Plant Physiol, 2017, 173 (2): 1258
25 Swiezewski S, Liu F, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an arabidopsis polycomb target [J]. Nature, 2009, 462 (7274): 799-802
26 Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, Rosa S, S?ll T, Holm S, Dean C, Howard M. Temperature sensing is distributed throughout the regulatory network that controls FLC epigenetic silencing in vernalization [J]. Cell Syst, 2018, 7 (6): 643-655
27 李巍, 徐启江. 被子植物开花时间和花器官发育的表观遗传调控研究进展[J]. 园艺学报, 2014, 41 (6): 1245-1256 [Li W, Xu JQ. Epigenetic research progress on flowering time and flower organ development in angiosperms [J]. Acta Hortic Sin, 2014, 41 (6): 1245-1256]
28 Lin SI, Wang JG, Poon SY, Su CL, Wang SS, Chiou TJ. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis [J]. Plant Physiol, 2005, 137 (3): 1037-1048
29 Searle I, He Y, Turck F, Vincent C, Fornara F, Kr?ber S, Amasino RA, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis [J]. Genes Dev, 2006, 20 (7): 898-912
30 Immink RG, Posé D, Ferrario S, Ott F, Kaufmann K, Valentim FL, de Folter S, van der Wal F, van Dijk AD, Schmid M, Angenent GC. Characterization of SOC1’s central role in flowering by the identification of its upstream and downstream regulators [J]. Plant Physiol, 2013, 162 (4): 2151-2151
31 Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC) [J]. PNAS, 2000, 97 (7): 3753-3758
32 Trevaskis B, Hemming MN, Dennis ES, Peacock WJ. The molecular basis of vernalization-induced flowering in cereals [J]. Trends Plant Sci, 2007, 12 (8): 352-357
33 Richard A. Seasonal and developmental timing of flowering [J]. Plant J, 2010, 61 (6): 1001-1013
34 Song J, Angel A, Howard M, Dean C. Vernalization - a cold-induced epigenetic switch [J]. J Cell Sci, 2012, 125 (16): 3723-31
35 Finnegan EJ, Dennis ES. Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells [J]. Curr Biol, 2007, 17 (22): 1978-1983
36 Satake A, Iwasa Y. A stochastic model of chromatin modification: cell population coding of winter memory in plants [J]. J Theor Biol, 2012, 302 (17): 6-17
37 Tao Z, Hu H, Luo X, Jia B, Du J, He Y. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis [J]. Nat Plants, 2019, 5 (4): 424-435
38 Choi K, Kim S, Kim SY, Kim M, Hyun Y, Lee H, Choe S, Kim SG, Michaels S, Lee I. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis [J]. Plant Cell, 2005, 17 (10): 2647-2660
39 Ding L, Kim SY, Michaels SD. FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis [J]. Plant Physiol, 2013, 163 (1): 243-252
40 Jeon Y, Lee JH. YY1 tethers xist RNA to the inactive X nucleation center [J]. Cell, 2011, 146 (1): 119-133
41 Kim DH, Doyle MR, Sung S, Amasino RM. Vernalization: winter and the timing of flowering in plants [J]. Annu Rev Cell Dev Biol, 2009, 25 (1): 277
42 Woloszynska M, Le Gall S, Neyt P, Boccardi TM, Grasser M, L?ngst G, Aesaert S, Coussens G, Dhondt S, Van De Slijke E, Bruno L, Fung-Uceda J, Mas P, Van Montagu M, Inzé D, Himanen K, De Jaeger G, Grasser KD, Van Lijsebettens M. Histone 2B monoubiquitination complex integrates transcript elongation with RNA processing at circadian clock and flowering regulators [J]. PNAS, 2019, 116 (16): 8060-8069
43 Cao Y, Dai Y, Cui S, Ma L. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis [J]. Plant Cell, 2008, 20 (10): 2586-2602
44 Crevillén P, Dean C. Regulation of the floral repressor gene : the complexity of transcription in a chromatin context [J]. Curr Opin Plant Biol, 2011, 14 (1): 38-44
45 Albani MC, Castaings L, W?tzel S, Mateos JL, Wunder J, Wang R, Reymond M, Coupland G. PEP1 of Arabis alpina is encoded by two overlapping genes that contribute to natural genetic variation in perennial flowering [J]. PLoS Genet, 2012, 8 (12): e1003130
46 Wang R, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland G, Albani MC. PEP1 regulates perennial flowering in Arabis alpina [J]. Nature, 2009, 459 (7245): 423
47 Lazaro A, Zhou Y, Giesguth M, Nawaz K, Bergonzi S, Pecinka A, Coupland G, Albani MC. PERPETUAL FLOWERING2 coordinates the vernalization response and perennial flowering in Arabis alpina [J]. J Exp Bot, 2019, 70 (3): 949-961
48 Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, Peacock WJ. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization [J]. PNAS, 2008, 105 (6): 2214-2219
49 Dimitrova N, Zamudio JR, Jong RM, Resnick R, Sarma K, Ward AJ, Raj A, Lee JT, Sharp PA, Jacks T. LincRNA-p21 Activates p21 In cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint [J]. Mol Cell, 2014, 54 (5): 777-790
50 Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response [J]. Cell, 2010, 142 (3): 409-419
51 Mitchell G, Rinn JL. Modular regulatory principles of large non-coding RNAs [J]. Nature, 2012, 482 (7385): 339-46
52 Bonasio R, Shiekhattar R. Regulation of transcription by long noncoding RNAs [J]. Annu Rev Genet, 2014, 48 (48): 433-455.
53 Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, Schmitt N, Dold A, Ginsberg D, Grummt I. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure [J]. Mol Cell, 2015, 60 (4): 626-636
54 Smith AP, Jain A, Deal RB, Nagarajan VK, Poling MD, Raghothama KG, Meagher RB. Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator [J]. Plant Physiol, 2010, 152 (5): 217-25
55 Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3’ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing [J]. Science, 2010, 327 (5961): 94-97
56 Tian Y, Zheng H, Zhang F, Wang S, Ji X, Xu C, He Y, Ding Y. PRC2 recruitment and H3K27me3 deposition at require FCA binding of COOLAIR [J]. Sci Adv, 2019, 5 (4): eaau7246
57 Yang H, Howard M, Dean C. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC [J]. Curr Biol, 2014, 24 (15): 1793-1797
58 Li P, Tao Z, Dean C. Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR [J]. Genes Dev, 2015, 29 (7): 696-701
59 Kim DH, Sung S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs [J]. Dev Cell, 2017, 40 (3): 302-312
60 Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA [J]. Science, 2011, 331 (6013): 76-79
61 Kim DH, Xi Y, Sung S. Modular function of long noncoding RNA, COLDAIR, in the vernalization response [J]. PLoS Genet, 2017, 13 (7): e1006939
62 李莉, 李旭, 刘亚文, 刘宏涛. 光和温度调控开花时间的研究进展[J]. 中国科学: 生命科学, 2016, 46 (3): 253 [Li L, Li X, Liu YW, Liu HT. Flowering responses to light and temperature [J]. Sci China Life Sci, 46 (3): 253]
63 Quail PH. Photosensory perception and signalling in plant cells: new paradigms? [J]. Curr Opin Cell Biol, 2002, 14 (2): 180-188
64 Briggs WR, Christie JM. Phototropins 1 and 2: versatile plant blue-light receptors [J]. Trends Plant Sci, 2002, 7 (5): 204-210.
65 Lin C. Blue light receptors and signal transduction [J]. Plant Cell, 2002, 14: S207-25
66 吕有军, 王彩霞, 杨卫军, 张永山. 高等植物成花素FT基因: 基因与机制的研究进展[J]. 分子植物育种, 2015, 13 (6): 1415-1423 [Lu YJ, Wang CX,Yang WJ, Zhang YS. FT homologous gene in higher plants: progress on genes and mechanisms [J]. Mol Plant Breed, 2015, 13 (6): 1415-1423]
67 Chen M, Penfield S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time [J]. Science, 2018, 360 (6392): 1014-1017
68 Luo X, Chen T, Zeng X, He D, He Y. Feedback regulation of FLC by FLOWERING LOCUS T (FT) and FD through a 5′ FLC promoter region in Arabidopsis [J]. Mol Plant, 2019, 12 (3): 285-288
69 Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation [J]. PNAS, 2005, 102 (7): 2460-5
70 Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background [J]. PLoS Genet, 2013, 9 (1): e1003289
71 Scortecci K, Michaels SD, Amasino RM. Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana [J]. Plant Mol Biol, 2003, 52 (5): 915-922
72 Lee JH, Ryu HS, Chung KS, Posé D, Kim S, Schmid M, Ahn JH. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors [J]. Science, 2013, 342 (6158): 628-632
73 Sureshkumar B, Detlef W. Temperature induced flowering in arabidopsis thaliana [J]. Plant Signal Behav, 2006, 1 (5): 227-228
74 Scortecci KC, Michaels SD, Amasino RM. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering [J]. Plant J, 2010, 26 (2): 229-236
75 Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH. Role of SVP in the control of flowering time by ambient temperature in Arabidopsisb [J]. Genes Dev, 2007, 21 (4): 397-402
76 Ayako Y, Mitsutomo A. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower [J]. J Plant Res, 2012, 125 (6): 693-704
77 Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, R?dmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature, 2012, 425 (6956): 415-419
78 周琴, 张思思, 包满珠,刘国锋. 高等植物成花诱导的分子机理研究进展[J]. 分子植物育种, 2018, 16 (11): 3681-3692 [Zhou Q, Zhang SS, Bao MZ, Liu GF. Advances on molecular mechanism of floral initiation in higher plants [J], Mol Plant Breed, 2018, 16 (11): 3681-3692]
79 Eleonora S, Stephen J. The role of microRNAs in the control of flowering time [J]. J Exp Bot, 2014, 65 (2): 365-380
80 Tao Z, Shen L, Liu C, Liu L, Yan Y, Yu H. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis [J]. Plant J, 2012, 70 (4): 549-561
81 Ye BB, Zhang K, Wang JW. The role of miR156 in rejuvenation in Arabidopsis thaliana [J]. J Integr Plant Biol, 2019, 62 (5): 550-555
82 Jung JH, Seo PJ, Ahn JH, Park CM. Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering [J]. J Biol Chem, 2012, 287 (19): 16007-16016
83 Knight H, Trewavas AJ, Knight MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation [J]. Plant Cell, 1996, 8 (3): 489-503
84 Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis [J]. Cell, 2010, 140 (1): 136-147
85 Devin CD, Daniel Z. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes [J]. PLoS Genet, 2012, 8 (10): e1002988
86 Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA. Transcription factor PIF4 controls the thermosensory activation of flowering [J]. Nature, 2012, 484 (7393): 242
87 Thines BC, Youn Y, Duarte MI, Harmon FG. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5 [J]. J Exp Bot, 2014, 65 (4): 1141-1151
88 Klein BJ, Ahmad S, Vann KR, Andrews FH, Mayo ZA, Bourriquen G, Bridgers JB, Zhang J, Strahl BD, C?té J, Kutateladze TG. Yaf9 subunit of the NuA4 and SWR1 complexes targets histone H3K27ac through its YEATS domain [J]. Nucleic Acids Res, 2018, 46 (1): 421-430
89 Crevillén P, Gómez-Zambrano ?, López JA, Vázquez J, Pi?eiro M, Jarillo JA. Arabidopsis YAF9 histone readers modulate flowering time through NuA4-complex-dependent H4 and H2A.Z histone acetylation at FLC chromatin [J]. New Phytol, 2019, 222 (4): 1893-1908
90 Fitter AH, Fitter RS. Rapid changes in flowering time in British plants [J]. Science, 2002, 296 (5573): 1689-1691

相似文献/References:

[1]孙莹,石锦安,邵小鹏,等.不同生境条件下光照强度对蓝花楹光合色素含量及开花的影响[J].应用与环境生物学报,2015,21(06):1150.[doi:10.3724/SP.J.1145.2015.07036]
 SUN Ying,SHI Jinan,SHAO Xiaopeng,et al.Effects of light intensity on photosynthetic pigment content and flowering of Jacaranda mimosifolia D. Don in different habitats[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):1150.[doi:10.3724/SP.J.1145.2015.07036]

更新日期/Last Update: 2020-06-25