|本期目录/Table of Contents|

[1]何琳,祝其丽,王彦伟,等.多年生禾草皇竹草的综合利用研究进展[J].应用与环境生物学报,2020,26(03):705-712.[doi:10.19675/j.cnki.1006-687x.2019.06004]
 HE Lin,ZHU Qili,et al.Advances in research on the comprehensive utilization of a perennial grass Pennisetum hydridum[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):705-712.[doi:10.19675/j.cnki.1006-687x.2019.06004]
点击复制

多年生禾草皇竹草的综合利用研究进展
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年03期
页码:
705-712
栏目:
综述
出版日期:
2020-06-25

文章信息/Info

Title:
Advances in research on the comprehensive utilization of a perennial grass Pennisetum hydridum
作者:
何琳祝其丽王彦伟何明雄谭芙蓉
1成都大学药学与生物工程学院 成都 610106 2农业部沼气科学研究所 成都 610041
Author(s):
HE Lin1 2 ZHU Qili2 WANG Yanwei2 HE Mingxiong2 & TAN Furong2?
1 College of Pharmacy and Biological Engineerging, Chengdu University, Chengdu 610106, China 2 Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
关键词:
皇竹草综合利用生态治理饲料化能源化
Keywords:
Pennisetum hydridum comprehensive utilization ecological restoration forage preparation bio-energy conversion
DOI:
10.19675/j.cnki.1006-687x.2019.06004
摘要:
因具有高产、速生、抗逆性强等生物学特性,被选作环境修复材料、优质饲草以及能源植物的皇竹草(Pennisetum hydridum)近年来备受关注. 对国内外皇竹草在生态环境、畜禽饲料、清洁能源等领域的研究进展及应用情况进行综述,为皇竹草生物质资源的综合利用提供参考. 已有研究表明,皇竹草在退化土壤修复、污水净化和入侵物种治理中均能发挥重要作用,可以高效富集土壤重金属、去氮除磷、取代外来入侵物种等. 青饲、干草、氨化和青贮是皇竹草饲料化利用的主要方式,其中青贮利用可均衡营养,缓解冬春饲料短缺. 通过热解燃烧、沼气发酵和乙醇发酵可实现皇竹草向生物能源的转化,生物量和纤维含量是影响其能源利用潜力的关键,也是制作纤维板、纳米纤维素膜、食用菌培养基的基础. 最后分析皇竹草研究目前存在的问题,强调未来应注重优化工艺技术,拓展皇竹草生物质资源综合利用途径,并提出环境修复材料皇竹草在收获后可作为优质饲草、能源植物以及其他工业原料加以利用,产生的废渣可加工为有机肥的一种综合利用模式. (图2 表3 参80)
Abstract:
Because of its biological characteristics of large biomass, fast growth, and strong resistance, Pennisetum hydridum has raised public concern in recent years. In this review, the recent advances and applications of P. hydridum in the fields of ecological environment, livestock feedstuff, bioenergy, and other aspects are summarized, which could benefit the comprehensive utilization of P. hydridum biomass resources. The results demonstrated the importance of P. hydridum for remediating degraded soil, purifying sewage, and controlling invasive species; therefore, heavy metals, nitrogen and phosphorus, and invasive species can be effectively removed by P. hydridum. The main approaches for forage utilization are green fodder, hay, ammonification, and ensiling. Among these, ensiling achieves a balanced nutrition and alleviates deficiencies in livestock during spring and winter. Pyrolysis and combustion, biogas fermentation, and bioethanol fermentation convert P. hydridum to bioenergy. Biomass and cellulose content are the key factors affecting the energy utilization potential and are the basis for developing fiberboard, nanocellulose membrane, and edible fungus culture medium. Finally, this study analyzed the existing problems in current studies, emphasizing the optimization of technology and expanding the utilization approaches of P. hydridum biomass resources in the future. A comprehensive utilization mode of biomass resource of P. hydridum was introduced, including using this harvested environmental phytoremediation material as a high-quality forage, energy plant, as well as a source of other industrial products, thus changing waste residue into organic fertilizer.

参考文献/References:

1 Carriquiry MA, Du X, Timilsina GR. Second generation biofuels: economics and policies [J]. Energy Policy, 2011, 39 (7): 4222-4234
2 Fedenko JR, Erickson JE, Woodar KR, Sollenberger LE, Vendramini JMB, Gilbert RA, Helsel ZR, Peter GF. Biomass production and composition of perennial grasses grown for bioenergy in a subtropical climate across Florida, USA [J]. Bioenerg Res, 2013, 6 (3): 1082-1093
3 Guo WW, Zhuo MC, Shi YL, Qu XL, Li ZP, Fang JP. Bibliometric analysis on Pennisetum sinese Roxb. in China during 2006-2016 [J]. Asian J Agric Res, 2017, 9 (10): 82-84
4 张继友. 中国王草种质资源经济价值研究[D]. 海口: 海南大学,2014 [Zhang JY. Reserch on economic value of king grass germlasm resources for China [D]. Haikou: Hannan University, 2014]
5 颜朗,吴燕,陈鼎,谭雪梅,张义正. 皇竹草转录组分析揭示其抗冻性[J]. 应用与环境生物学报, 2017, 23 (3): 459-466 [Yan L, Wu Y, Chen D, Tan XM, Zhang YZ. Transcriptome analysis reveals cold acclimation in Pennisetum sinese Roxb. [J]. Chin J Appl Environ Biol, 2017, 23 (3): 459-466]
6 Geren H, Kavut Y. Effect of different plant densities on the yield and some silage quality characteristics of giant king grass (Pennisetum hybridum) under mediterranean climatic conditions [J]. Turk J Field Crops, 2015, 20 (1): 85-91
7 Ma C, Hui M, Lin C, Naidu R, Bolan N. Phytoextraction of heavy metal from tailing waste using Napier grass [J]. Catena, 2016, 136: 74-83
8 Lu QL, Tang LR, Wang S, Huang B, Chen YD, Chen XR. An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese [J]. Biomass Bioenergy, 2014, 70: 267-272
9 Minmunin J, Limpitipanich P, Promwungkwa A. Delignification of elephant grass for production of cellulosic intermediate [J]. Energy Procedia, 2015, 79: 220-225
10 Cui H, Fan Y, Yang J, Xu L, Zhou J, Zhu Z. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil [J]. Chemosphere, 2016, 161: 233-241
11 Zhang X, Xia H, Li Z, Ping Z, Bo G. Potential of four forage grasses in remediation of Cd and Zn contaminated soils [J]. Bioresour Technol, 2010, 101 (6): 2063-2066
12 Zhang WH, He LY, Wang Q, Sheng XF. Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum [J]. J Hazard Mater, 2015, 300: 513-521
13 Hu L, Wang R, Liu X, Xu B, Xie T, Li Y, Wang M, Wang G, Chen Y. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient [J]. Environ Sci Pollut Res, 2018, 25 (22): 21671-21681
14 Zhang X, Zhang X, Bo G, Li Z, Xia H, Li H, Jian L. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of anenergy crop, king grass (Pennisetum americanum × P. purpureum ) [J]. Biomass Bioenergy, 2014, 67: 179-187
15 Ma CJ, Ming H, Li HS. Study of red mud improvement with the mixing method and the impact of Pennisetum hybridum plantation on red mud amendment [J]. Adv Mater Res, 2013, 807-809: 392-401
16 Liang H, Lee CCC, Wang H, Lin XY, Chen XH, Wu QT. Using a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludge [J]. Biol Technol, 2016, 217: 252-256
17 林晓燕,王慧,王浩,陈诚,吴启堂,卫泽斌,罗赢鹏,陈晓红. 利用皇竹草处理城市污泥生产植物产品[J]. 生态学报, 2015, 35 (12): 4234-4240 [Lin X, Wang H, Wang H, Chen C, WU QT, Wei Z, Luo Y, Chen X. Using hybrid giant napier to treat municipal sewage sludge and produce plant biomass [J]. Acta Ecol Sin, 2015, 35 (12): 4234-4240]
18 Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms [J]. Environ Exp Bot, 2012, 83 (5): 33-46
19 张杏锋, 田超, 高波. 能源植物皇草对重金属的耐性及修复潜力[J]. 环境工程学报, 2017, 11 (5): 3204-3213 [Zhang XF, Tian C, Gao B. Heavy metal tolerance and phytoremediation potential of energy crop, king grass [J]. Chin J Environ Eng, 2017, 11 (5): 3204-3213]
20 包红旭, 李良玉, 刘海军, 张欣, 苏弘治, 张馨月, 张浩, 杨华, 黄颖芝, 吕志忠, 杨雨萌, 刘唯玉, 陈阳, 隋然. 一种采用生物质炭协同蚯蚓和狼尾草联合修复废弃铬渣场地的方法: CN108580545A [P]. 2018-09-28
21 梅娟. 铅锌矿尾砂污染农田的修复治理与利用研究[D]: 太原: 山西大学, 2013 [Mei J. Remediation and utilization of lead-zinc mine tailings contaminated agritultural soils [D]. Taiyuan: Shanxi University, 2013]
22 Ishii Y, Hamano K, Kang DJ, Idota S, Nishiwaki A. Cadmium phytoremediation potential of napiergrass cultivated in Kyushu, Japan [J]. Appl Environl Soil Sci, 2015, 2015: 1-6
23 Chen Y, Hu L, Liu X, Deng Y, Liu M, Xu B, Wang M, Wang G. Influences of king grass (Pennisetum sinese Roxb.)-enhanced approaches for phytoextraction and microbial communities in multi-metal contaminated soil [J]. Geoderma, 2017, 307: 253-266
24 Sangthong C, Setkit K, Prapagdee B. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. [J]. Environ Sci Pollut Res Int, 2016, 23 (1): 756-764
25 Xu C, He S, Liu Y, Zhang W, Lu D. Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU [J]. Chemosphere, 2017, 173: 622-629
26 Wiangkham N, Prapagdee B. Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel [J]. Chemosphere, 2018, 201: 511-518
27 Dell’Amico E, Cavalca L, Andreoni V. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria [J]. Soil Biol Biochem, 2008, 40 (1): 74-84
28 Mirshad PP, Chandran S, Puthur JT. Characteristics of bioenergy grasses important for enhanced NaCl tolerance potential [J]. Russ J Plant Physiol, 2014, 61 (5): 639-645
29 Purbajanti ED, Soetrisno RD, Hanudin E, Budhi SPS. Phytosynthesis and yields of grasses grown in saline condition [J]. J Indo Trop Animal Agric, 2010, 35 (1): 42-47
30 Chongjian M, Ravi N, Faguang L, Changhua L, Hui M. Influence of hybrid giant Napier grass on salt and nutrient distributions with depth in a saline soil [J]. Biodegradation, 2012, 23 (6): 907-916
31 Quinn LD, Straker KC, Guo J, Kim S, Thapa S, Kling G, Lee DK, Voigt TB. Stress-tolerant feedstocks for sustainable bioenergy production on marginal land [J]. Bioenergy Res, 2015, 8 (3): 1081-1100
32 Li X, Geng X, Xie R, Fu L, Jiang J, Gao L, Sun J. The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of hybrid Pennisetum [J]. Biotechnol Biofuels, 2016, 9 (1): 190
33 马崇坚, 刘发光. 皇竹草在生态环境治理中的应用研究进展[J]. 中国水土保持, 2012 (1): 41-44 [Ma CJ, Liu FG. Research progress on the application of king grass in ecological environment management [J]. Soil Water Conserv Chin, 2012 (1): 41-44]
34 Jiao Y, Xu X, Liu M, Xu C, Wei L, Song T, Hu D, Kiely G. Effects of Napier grass management on soil hydrologic functions in a karst landscape, southwestern China [J]. Soil Tillage Res, 2016, 157: 83-92
35 Vadivel R, Singh Y, Bal SK, Rane J, Singh NP. Napier grass: a model crop for developing partially weathered gravelly land in the central deccan plateau region [J]. PNAS, India Sect B: Biol Sci, 2018 (2): 1-11
36 Pincam T, Brix H, Eller F, Jampeetong A. Hybrid Napier grass as a candidate species for bio-energy in plant-based water treatment systems: interactive effects of nitrogen and water depth [J]. Aquat Bot, 2017, 138: 82-91
37 Jampeetong A, Muenrew J. Interactive effects of NH4+ concentration and O2 availability on growth, morphology, and mineral allocation of hybrid Napier grass (Pennisetum purpureum × P. americanum cv. Pakchong1) [J]. Ecol Eng, 2016, 91: 409-418
38 Pantip K. Swine wastewater treatment using vertical subsurface flow constructed wetland planted with napier grass [J]. Sust Environ Res, 2016, 26 (5): 217-223
39 Antony S, Thomas CG. Nutritive quality of hybrid Napier cultivars grown under rainfed ecosystem [J]. J Trop Agric, 2014, 52 (1): 90-93
40 Wangchuk K, Rai K, Nirola H, Thukten, Dendup C, Mongar D. Forage growth, yield and quality responses of Napier hybrid grass cultivars to three cutting intervals in the Himalayan foothills [J]. Trop Grasslands-Forrajes, 2015, 3 (3): 142-150
41 Delena MF, Fulpagare YG. Characteristics of silage prepared from Hybrid Napier, Maize and Lucerne [J]. J Agric Vet Sci, 2015, 8 (5): 13-16
42 ALI SA, Y XJ, D ZH, W SN, Tao S. Effects of lactic acid bacteria on ensiling characteristics, chemical composition and aerobic stability of king grass [J]. J Anim Plant Sci, 2017, 3: 747-755
43 Shah AA, Yuan XJ, Dong ZH, Li JF, Tao S. Microbiological and chemical profiles of elephant grass inoculated with and without Lactobacillus plantarum and Pediococcus acidilactici [J]. Arch Microbiol, 2018, 200 (2): 311-328
44 杨丁, 金仕强, 刘丽, 沈留红, 刘跃. 皇竹草混合青贮饲料的制备方法及由该方法制备的饲料: CN108077601A [P]. 2018-05-29
45 Samini M, Premaratne S. Yield and nutritional quality potential of three fodder grasses in the northern region in Sri Lanka [J]. Trop Agric Res, 2017, 28 (2): 175-182.
46 王慧娟. 羊常用粗饲料营养价值评定[D]. 阳陵: 西北农林科技大学, 2017 [Wang HJ. Evaluation of nutritive value of common forage in sheep [D]. Yangling: Northwest A&F University, 2017]
47 Fang C, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production [J]. Nat Biotechnol, 2007, 25 (7): 759
48 Zhang J, Song Y, Wang B, Xu Z, Tan T. Biomass to bio-ethanol: the evaluation of hybrid Pennisetum used as raw material for bio-ethanol production compared with corn stalk by steam explosion joint use of mild chemicals [J]. Renew Energy, 2016, 88 (6): 164-170
49 Cardona E, Rios J, Pena J, Pe?uela M, Rios L. King grass: a very promising material for the production of second generation ethanol in tropical countries [J]. Biomass bioenergy, 2016, 95: 206-213
50 朱桂英. 能源草生产纤维素乙醇的比较研究[D]. 北京: 北京化工大学, 2017 [Zhu GY. The comparative research on bioenergy grasses to produce cellulose ethanol [D]. Beijing: Beijing University of Chemical Technology, 2017]
51 Mohapatra S, Mishra C, Behera SS, Thatoi H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass–a review [J]. Renew Sust Energ Rev, 2017, 78: 1007-1032
52 Tsai WT, Tsai YL. Thermochemical characterization of napier grass as an energy source and its environmental and economic benefit analysis [J]. Energ Source, Part B: Ecol Plan, 2016, 11 (2): 130-136
53 Nimmanterdwong P, Chalermsinsuwan B, Ostergard H, Piumsomboon P. Environmental performance assessment of Napier grass for bioenergy production [J]. J Cleaner Prod, 2017, 165: 645-655
54 Weijde TVD, Kamei CLA, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM. The potential of C4 grasses for cellulosic biofuel production [J]. Front Plant Sci, 2013, 4 (107): 107
55 Weijde TVD, Kiesel A, Iqbal Y, Muylle H, Trindade LM. Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products [J]. GCB Bioenergy, 2017, 9 (1): 176-190
56 Lorenzana R. Quantitative Trait loci and trait correlations for maize stover cell wall composition and glucose release for cellulosic ethanol [J]. Crop Sci, 2010, 50 (2): 541-555
57 Jung HJG, Bernardo R. Comparison of cell wall polysaccharide hydrolysis by a dilute acid/enzymatic saccharification process and rumen microorganisms [J]. Bioenergy Res, 2012, 5 (2): 319-329
58 Canilha L, Santos VT, Rocha GJ, Jb AES, Giulietti M, Silva SS, Felipe MG, Ferraz A, Milagres AM, Carvalho W. A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid [J]. J Ind Microbiol Biotechnol, 2011, 38 (9): 1467-1475
59 Masarin F, Gurpilhares DB, Baffa DC, Barbosa MH, Carvalho W, Ferraz A, Milagres AM. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content [J]. Biotechnol Biofuels, 2011, 4 (1): 55
60 Amukelani Lacrecia S, Matthias F, Wolfgang F. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench [J]. Theo Appl Genet, 2010, 121 (2): 323-336
61 Stefaniak TR, Dahlberg JA, Bean BW, Dighe N, Wolfrum EJ, Rooney WL. Variation in biomass composition components among forage, biomass, sorghum-sudangrass, and sweet sorghum types [J]. Crop Sci, 2012, 52 (4): 1949-1954
62 Liao Y, Fang H, Zhang H, Yu Z, Liu Z, Ma X. Energy analysis and environmental impacts of hybrid giant napier (Pennisetum hydridum) direct-fired power generation in south China [J]. IOP Conf Ser Mater Sci Eng, 2017, 199: 12094
63 Mohammed I, Abakr Y, Kazi F, Yusup S, Alshareef I, Chin S. Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion [J]. Energies, 2015, 8 (5): 3403-3417
64 黄柱坚, 朱子骜, 吴学深, 赖晓琳, 王皮毓, 胡新将, 崔理华. 皇竹草生物炭的结构特征及对重金属吸附作用机制[J]. 环境化学, 2016, 35 (4): 766-772 [Huang ZJ, Zhu ZA, Wu XS, Lai XL, Hu XJ, Cui LH. Adsorption of heavy metals by biochar from Pennisetum sinese Roxb. [J]. Environ Chem, 2016, 35 (4): 766-772]
65 He H, Pan J, Yu P, Chen G, Li H. Effects of hybrid giant Napier biochar on cadmium migration in a cabbage-soil system contaminated with cadmium and butachlor [J]. Pol J Environ Stud, 2017, 26 (2): 619-625
66 龚舒静, 段青松, 杨姝, 张娅玲, 赵艳, 秦向东. 不同发酵条件对杂交狼尾草厌氧发酵产沼气的影响[J]. 中国沼气, 2014, 32 (6): 26-32 [Gong SJ, Duan QS, Yang S, Zhang YL, Zhao Y, Qin XD. Effect of different anaerobic fermentation condition on biogas production of hybrid Pennisetum [J]. Chin Biogas, 2014, 32 (6): 26-32]
67 Li L, Sun Y, Yuan Z, Kong X, Wang Y. Influence of harvest period and frequency on methane yield of Pennisetum hybrids [J]. J Energy Eng, 2016, 142 (3): 1-6
68 李连华, 孙永明, 袁振宏, 孔晓英, 刘晓风, 李东. 能源草单独厌氧发酵产气性能研究[J]. 中国沼气, 2014, 32 (1): 18-22 [Li LH, Sun YM, Yuan ZH, Kong XY, Liu XF, Li D. Mono-digestion of different energy grass and biogas production [J]. Chin Biogas, 2014, 32 (1): 18-22]
69 范希峰, 侯新村, 朱毅, 武菊英. 杂交狼尾草作为能源植物的产量和品质特性[J]. 中国草地学报, 2012, 34 (1): 48-52 [Fan XF, Hou XC, Zhu Y, Wu JY. Biomass yield and quality of hybrid Pennisetum [J]. Chin J Grass, 2012, 34 (1): 48-52]
70 Weerayutsil P, Khoyun U, Khuanmar K. Optimum ratio of chicken manure and Napier grass in single stage anaerobic co-digestion [J]. Energy Procedia, 2016, 100: 22-25
71 Li L, Ying L, Sun Y, Yuan Z, Lü P, Kang X, Yi Z, Yang G. Influence of the feedstock ratio and organic loading rate on the co-digestion performance of Pennisetum hybrid and cow manure [J]. Energy Fuels, 2018, 32 (4): 5171-5180
72 李兵, 郑晓伟, 肖佳旭, 刘刚金, 刘永兵. 杂交狼尾草与猪粪混合发酵产甲烷研究[J]. 可再生能源, 2015, 33 (6): 902-907 [Li B, Zhen XW, Xiao JX, Liu GJ, Liu YB. Study on Pennisetum pureum and pig manure mixed fermentation [J]. Renew Energy Resour, 2015, 33 (6): 902-907]
73 Dussadee N, Reansuwan K, Ramaraj R. Potential development of compressed bio-methane gas production from pig farms and elephant grass silage for transportation in Thailand [J]. Bioresour Technol, 2014, 155 (4): 438
74 吴娟子, 张建丽, 潘玉梅, 刘智微, 钟小仙. 象草和杂交狼尾草细胞壁组分及乙醇理论产量动态分析[J]. 草业学报, 2014, 23 (4): 153-161 [Wu JZ, Zhang JL, Pan YM, Liu ZW, Zhong XX. Changes of the content and biomass of cell wall components and calculated ethanol yields in Pennisetum purpureum and hybrid Pennisetum during the growing period [J]. Acta Prat Sin, 2014, 23 (4): 153-161]
75 Li Y, Zhang Y, Zheng H, Jian D, Zhang H, Wu J, Huang H. Preliminary evaluation of five elephant grass cultivars harvested at different time for sugar production [J]. Chin J Chem Eng, 2015, 23 (7): 1188-1193
76 Kang X, Sun Y, Li L, Kong X, Yuan Z. Improving methane production from anaerobic digestion of Pennisetum hydridum by alkaline pretreatment [J]. Bioresour Technol, 2017, 255: 205-212
77 Yasude M, Ishii Y, Ohta K. Napier grass (Pennisetum prupureum Schuach) as a raw material for bioethanol prodution: pretreatment, saccharification, and fermentation [J]. Biotechnol Bioprocess Eng, 2014, 19: 943-950
78 Camesasca L, Ramirez M, Guigou M, Ferrari M, Lareo C. Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production [J]. Biomass Bioenergy, 2015, 74: 193-201
79 Jiang Y, Wu Q, Wei Z, Wang J, Fan Z, Pang Z, Zhu Z, Zheng S, Lin X, Chen Y. Papermaking potential of Pennisetum hybridum fiber after fertilizing treatment with municipal sewage sludge [J]. J Clean Prod, 2019, 208: 889-896
80 Chen HZ, Zhang JX, Leung CL, Li Y. A processing method for fractionally converting pennisetum hydridum into fuel ethanol with co-production of electricity generation and paper pulp: US20110104773A1 [P]. 2011-05-05

相似文献/References:

[1]颜朗,吴燕,陈鼎,等.皇竹草转录组分析揭示其抗冻特性[J].应用与环境生物学报,2017,23(03):459.[doi:2016.07038]
 YAN Lang,WU Yan,CHEN Ding,et al.Transcriptome analysis reveals cold acclimation in Pennisetum sinese Roxb[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):459.[doi:2016.07038]

更新日期/Last Update: 2020-06-25