|本期目录/Table of Contents|

[1]江佳,盛笑羚,邵炯妮,等.马尾松和木荷幼苗主要功能性状对氮磷和石灰添加的响应[J].应用与环境生物学报,2020,26(02):410-416.[doi:10.19675/j.cnki.1006-687x.2019.05048]
 JIANG Jia,SHENG Xiaoling,SHAO Jiongni,et al.Responses of the major functional traits of Pinus massoniana and Schima superba seedlings to nitrogen, phosphorus, and lime addition[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):410-416.[doi:10.19675/j.cnki.1006-687x.2019.05048]
点击复制

马尾松和木荷幼苗主要功能性状对氮磷和石灰添加的响应
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年02期
页码:
410-416
栏目:
研究论文
出版日期:
2020-04-25

文章信息/Info

Title:
Responses of the major functional traits of Pinus massoniana and Schima superba seedlings to nitrogen, phosphorus, and lime addition
作者:
江佳盛笑羚邵炯妮林颖何沁如韩文娟
1浙江师范大学化学与生命科学学院 金华 321000 2温州大学生命与环境科学学院 温州 325035
Author(s):
JIANG Jia1 SHENG Xiaoling1 SHAO Jiongni1 LIN Ying1 HE Qinru1 & HAN Wenjuan1 2?
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321000, China College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
关键词:
氮添加磷添加碳酸钙添加叶片功能性状根系功能性状
Keywords:
nitrogen addition phosphorus addition liming addition leaf functional trait root functional trait
DOI:
10.19675/j.cnki.1006-687x.2019.05048
摘要:
植物功能性状能够反映植物个体对环境的响应和适应. 为探究氮沉降对亚热带优势乔木树种功能性状的影响并寻求缓解过量氮沉降影响的措施,选择马尾松(Pinus massoniana)和木荷(Schima superba)幼苗为研究对象,设置了6个实验处理对照、加氮(20 g m-2 a-1)、加碳酸钙(100 g m-2 a-1)、加氮和加碳酸钙、加磷(10 g m-2 a-1)、加氮和加磷. 结果显示:(1)氮添加显著增加木荷的根茎叶生物量,分别增加了319.83%、67.79%和 66.14%;但对马尾松生物量的影响不显著. (2)氮添加显著增加木荷的总叶面积(增加了96.13%),但显著降低木荷的根系分叉数(降低了34.26%);马尾松叶片和根系功能性状对氮添加的响应不显著. (3)高氮添加背景下,碳酸钙添加显著降低了木荷的根叶生物量、总叶面积和比根长,分别降低了63.39%、30.56%、44.67%和80.81%;也显著降低了马尾松的比根长、比根面积和根分叉数,分别降低了54.11%、43.12%和59.39%;但对马尾松生物量无显著影响. (4)同时添加氮磷显著增加了木荷的根茎叶生物量,分别增加了96.41%、14.30%和34.65%;但对马尾松的生物量及根系功能性状无显著影响. 本研究表明木荷对氮沉降的敏感程度较马尾松高,氮沉降可能通过改变物种的叶片和根系功能性状影响木荷的生长;高氮沉降背景下,碳酸钙添加可能抑制木荷和马尾松幼苗的生长,但磷添加可进一步促进木荷的生长. (图3 表2 参37)
Abstract:
Plant functional traits can reflect the response and adaptation of individual plants to the environment. This study aimed to investigate the effect of N deposition on the functional traits of the dominant tree species in a subtropical zone as well as ways to mitigate the effects of N deposition. In this study, Pinus massoniana and Schima superba were selected as research objects, and six experimental treatments were set up: control, N addition (20 g m-2 a-1), liming (CaCO3 100 g m-2 a-1), phosphorus addition (P, 10 g m-2 a-1), N and lime addition, and N and P addition. The results showed that (1) N deposition significantly increased the root, stem, and leaf biomass of S. superba by 319.83%, 67.79%, and 66.14%, respectively, but did not affect the biomass of P. massoniana. (2) N deposition significantly increased the total leaf area of S. superba by 96.13% but significantly decreased the number of root forks of S. superba by 34.26%. The functional traits of the leaves and roots of P. massoniana did not respond to N deposition. (3) Under conditions of high N deposition, liming significantly reduced root, stem, and leaf biomass, leaf number, total leaf area, and the specific root length of S. superba by 63.39%, 30.56%, 35.87%, 44.67%, and 80.81%, respectively, and also significantly decreased the specific root length, specific root area, and the number of root forks of P. massoniana by 54.11%, 43.12%, and 59.39%, respectively, but did not affect the biomass of P. massoniana. (4) The addition of N and P significantly increased the root, stem, and leaf biomass of S. superba by 96.41%, 14.30%, and 34.65%, respectively, but there was no significant effect on the biomass and functional traits of P. massoniana. According to these results, we can conclude that the sensitivity of S. superba to N deposition was higher than that of P. massoniana. In addition, N deposition may affect the growth of S. superba by changing the functional traits of the leaves and roots. With an increase in nitrogen deposition, liming may inhibit the growth of S. superba and P. massoniana, while P addition may enhance the growth of S. superba.

参考文献/References:

1 Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008, 320 (5878): 889-892
2 Gu B, Ju X, Chang J, Ge Y, Vitousek PM. Integrated reactive nitrogen budgets and future trends in China [J]. PNAS, 2015, 112 (28): 8792-8797
3 薄正熙, 游成铭, 胡中民, 郭群, 何利元. 氮素与水分添加对内蒙古温带典型草原生物量的影响[J]. 应用与环境生物学报, 2017, 23 (4) : 658-664 [Bo ZX, You CM, Hu ZM, Gu Q, He LY. The influence of nitrogen and water addition on biomass in a typical steppe of Inner Mongolia [J]. Chin J Appl Environ Biol, 2017, 23 (4): 658-664]
4 郑世伟, 江洪. 氮沉降对森林生态系统影响的研究进展[J]. 浙江林业科技, 2014, 34 (2) : 56-64 [Zheng SW, Jiang H. Research progress on the impact of nitrogen deposition on forest ecosystem [J]. J Zhejiang For Sci Tech. 2014, 34 (2): 56-64]
5 Tian D, Wang H, Sun J, Niu S. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity [J]. Environ Res Lett, 2016, 11 (2): 0240
6 Bussotti F, Pollastrini M, Holland V, Bruggemann W. Functional traits and adaptive capacity of European forests to climate change [J]. Environ Exp Bot, 2015, 111:91-113
7 孙梅, 田昆, 张贇, 王行, 管东旭, 岳海涛. 植物叶片功能性状及其环境适应研究[J]. 植物科学学报, 2017, 35 (6) : 940-949 [Sun M, Tian K, Zhang Y, Wang H, Guan DX, Yue HT. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 2017, 35 (6): 940-94]
8 Withington JM, Reich PB, Oleksyn J, Eissenstat DM. Comparisons of structure and life span in roots and leaves among temperate trees [J]. Ecol Monogr, 2006, 76 (3): 381-397
9 Díaz S, Kattge J, Cornelissen JH. The global spectrum of plant form and function [J]. Nature, 2015, 529 (7585): 167-171
10 Libalah MB, Droissart V, Sonké, Bonaventure, Hardy OJ, Drouet T, Pescador DS. Shift in functional traits along soil fertility gradient reflects non-random community assembly in a tropical African rainforest [J]. Plant Ecol Evol, 2017, 150 (3): 265-278
11 陈利. 贝加尔针茅草甸草原主要植物与功能群的叶片性状对增氮增雨的响应[D]. 长春: 东北师范大学, 2015 [Chen L. Response of leaf traits at species and functional group levels to simulated nitrogen deposition and precipitation addition in a Stipa baicalensis meadow steppe [D]. Changchun: Northeast Normal University, 2015]
12 李红梅. 模拟氮沉降对墨西哥柏幼苗的影响[D]. 南京: 南京林业大学, 2013 [Li HM. Effects of simulated nitrogen deposition on Mexiccan Cypress seedlings [D]. Nanjin: Nanjing Forestry University, 2013]
13 杜乐山. 模拟氮沉降对入侵植物加拿大一枝黄花及同科本地植物苍耳生长的影响[J]. 江苏农业科学, 2014, 42 (6): 135-137 [Du LS. Effects of simulated nitrogen deposition on the growth of an invasive plant Canadian yellow flower and Xanthium sibiricum [J], Jiangsu Agric Sci, 2014, 42 (6): 135-137]
14 Corlett RT, Hughes AC. The Routledge Handbook of Forest Ecology [M]. Oxford: Routledge, 2015: 46-55
15 Xu W, Luo XS, Pan YP, Zhang L, Tang AH, Shen JL, Zhang Y, Li KH, Wu QH, Yang DW, Zhang YY, Xue J, Li WQ, Li QQ, Tang L, Lu SH, Liang T, TongYA, Liu P, Zhang Q, Xiong ZQ, Shi XJ, Wu LH, Shi WQ, Tian K, Zhong XH, Shi K, Tang QY, Zhang LJ, Huang JL, He CE, Kuang FH, Zhu B, Liu H, Jin X, Xin YJ, Shi XK, Du EZ, Dore AJ, Tang ST, Collett JL, Goulding K, Zhang FS, Liu XJ. Quantifying atmospheric nitrogen deposition through a national wide monitoring network across China [J]. Atmos Chem Phys, 2015,15 (21): 18365-18405.
16 吴茜, 丁佳, 闫慧, 张守仁, 方藤, 马克平. 模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响[J]. 植物生态学报, 2011, 35 (3): 256-267 [Wu Q, Ding J, Yan H, Zhang SR, Fang T, Ma KP. Effects of simulated precipitation and nitrogen addition on seedling growth and biomass in five tree species in Gutian Mountain, Zhejiang Province, China [J]. Chin J Plant Ecol, 2011, 35 (3): 256-267]
17 刘双娥, 李义勇, 方熊, 黄文娟, 龙凤玲, 刘菊秀. 不同氮添加量和添加方式对南亚热带4个主要树种幼苗生长的影响[J]. 植物生态学报, 2015, 39 (10): 950-961 [Liu SE, Li YY, Fang X, Huang WJ, Long FL, Liu JX. Effects of the level and regime of nitrogen addition on seedling growth of four major tree species in subtropical China [J]. Chin J Plant Ecol, 2015, 39 (10): 950-961]
18 Mo JM, Li DJ, Gundersen P. Seedling growth response of two tropical tree species to nitrogen deposition in southern China [J]. Eur For Res, 2008, 127 (4): 275-283
19 Wright RF, Rasmussen L. Introduction to the NITREX and EXMAN projects [J]. For Ecol Manage, 1998, 101 (1): 1-7
20 Bowman WD, Cleveland CC, ?ubo? H, Hre?ko, J, Baron JS. Negative impact of nitrogen deposition on soil buffering capacity [J]. Nat Geosci, 2008, 1 (11): 767-770
21 Lu XK, Mao QG, Gilliam FS, Luo Y, Mo J. Nitrogen deposition contributes to soil acidification in tropical ecosystems [J]. Global Change Bio, 2014, 20 (12): 3790-3801
22 Zhang Y, Zhou Z, Yang Q. Nitrogen (N) deposition impacts seedling growth of Pinus massoniana via N:P ratio effects and the modulation of adaptive responses to low P (phosphorus) [J]. PLOS ONE, 2013, 8 (10): e79229
23 Liu J, Zhang D, Huang W, Zhou G, Li Y, Liu S. Quantify the loss of major ions induced by CO2, enrichment and nitrogen addition in subtropical model forest ecosystems [J]. J Geophys Res-Biogeo, 2014, 119 (4): 676-686
24 Moore JD, Ouimet R, Long RP, Bukaveckas PA. Ecological benefits and risks arising from liming sugar maple dominated forests in north eastern North America [J]. Environ Rev, 2015, 23 (1): 1-12
25 Long RP, Bailey SW, Horsley SB, Hall TJ, Dewalle DR. Long-Term effects of forest liming on soil, soil leachate, and foliage chemistry in Northern Pennsylvania[J]. Soil Sci Soc Am J, 2015, 79 (4): 1223-1235
26 Radersma S, Grierson PF. Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere [J]. Plant Soil, 2004, 259 (1-2): 209-219
27 Pivovaroff AL, Santiago LS, Vourlitis GL, Grantz DA, Allen MF. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem [J]. Oecologia, 2016, 181 (3): 721-731
28 陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明. 氮沉降对森林土壤磷循环的影响[J]. 生态学报, 2016, 36 (16): 4965-4976 [Chen ML, Chen H, Mao QG, Zhu XM, Mo JM. Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: a review [J]. Acta Ecol Sin, 2016, 36 (16): 4965-4976]
29 阎恩荣, 王希华, 陈小勇. 浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响[J]. 生态学报, 2007, 27 (4): 1646-1655 [Yan ER, Wang XH, Chen XY. Impacts of evergreen broad-leaved forest degradation on soil nutrients and carbon pools in Tiantong Zhejiang Province [J]. Acta Ecol Sin, 2007, 27 (4): 1646-1655]
30 Bowden RD, Davidson E, Savage K, Arabia C, Steudler P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest [J]. For Ecol Manage, 2004, 196 (1): 43-56
31 Homan C, Beier C, Mccay T, Lawrence G. Application of lime (CaCO3) to promote forest recovery from severe acidification increases potential for earthworm invasion [J]. For Ecol Manage, 2016, 368: 39-44
32 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31 (1): 150-165 [Meng TT, Ni J, Wang GH. Plant functional traits, environments and ecosystem functioning [J]. Chin J Plant Ecol, 2007, 31 (1): 150-165]
33 万宏伟, 杨阳, 白永飞, 徐云虎, 白世勤. 羊草草原群落6种植物叶片功能特性对氮素添加的响应[J]. 植物生态学报, 2008, 32 (3): 611-621 [Wan HW, Yang Y, Bai YF, Xu YH, Bai SQ. Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus Chinensis steppe in Inner Mongolia [J]. Chin J Plant Ecol, 2008, 32 (3): 611-621]
34 Taiz L, Zeigar E. Plant Physiology. 4th ed. Sunderland: Sinauer Associates Inc. 2006
35 PérezHarguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P. New handbook for standardised measurement of plant functional traits worldwide [J]. Aust J Bot, 2013, 61 (3): 167-234
36 Britto DT, Kronzucker HJ. NH4+ toxicity in higher plants: a critical review [J]. J Plant Physiol, 2002, 159 (6): 567-584
37 Roem WJ, Klees H, Berendse F. Effects of nutrient addition and acidification on plant diversity and seed germination in heathland [J]. J Appl Ecol, 2002, 39 (6): 12

相似文献/References:

[1]方熊,刘菊秀,张德强,等.降水变化、氮添加对鼎湖山主要森林土壤有机碳矿化和土壤微生物碳的影响[J].应用与环境生物学报,2012,18(04):531.[doi:10.3724/SP.J.1145.2012.00531]
 FANG Xiong,LIU Juxiu,ZHANG Deqiang,et al.Effects of Precipitation Change and Nitrogen Addition on Organic Carbon Mineralization and Soil Microbial Carbon of the Forest Soils in Dinghushan, Southeastern China[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):531.[doi:10.3724/SP.J.1145.2012.00531]
[2]余华 潘宗涛 陈志强** 陈志彪 冯柳俊.氮添加对侵蚀退化红壤化学性质及芒萁叶功能性状的影响[J].应用与环境生物学报,2020,26(04):1.[doi:10.19675/j.cnki.1006-687x.2019.09061]

更新日期/Last Update: 2020-04-25