|本期目录/Table of Contents|

[1]谢钧宇,孟会生,焦欢,等.施肥对复垦土壤中活性和难降解碳氮组分的影响[J].应用与环境生物学报,2019,25(05):1113-1121.[doi:10.19675/j.cnki.1006-687x.2019.05032]
 XIE Junyu,MENG Huisheng,et al.Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions of reclaimed soils[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1113-1121.[doi:10.19675/j.cnki.1006-687x.2019.05032]
点击复制

施肥对复垦土壤中活性和难降解碳氮组分的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1113-1121
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions of reclaimed soils
作者:
谢钧宇孟会生焦欢洪坚平张杰李丽娜黄晓磊栗丽赵林婷李廷亮
1山西农业大学资源与环境学院 太谷 030801 2土壤环境与养分资源山西省重点实验室 太原 030031 3山西农业大学城乡建设学院 太谷 030801
Author(s):
XIE Junyu1 2 MENG Huisheng1 JIAO Huan1 HONG Jianping1 ZHANG Jie1 LI Lina1 HUANG Xiaolei1 LI Li1 ZHAO Linting3 & LI Tingliang1**
1 College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China 2 Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan 030031, China 3 College of Urban and Rural Construction, Shanxi Agricultural University, Taigu 030801, China
关键词:
复垦土壤施肥措施活性有机碳难降解有机碳土壤有机碳阈值
Keywords:
reclaimed soil fertilization regime labile organic carbon recalcitrant organic carbon soil organic carbon (SOC) critical level
分类号:
S154.1 : S158
DOI:
10.19675/j.cnki.1006-687x.2019.05032
摘要:
研究复垦土壤中活性和难降解碳氮组分随复垦年限和施肥措施变化的特征,以期深入理解采煤塌陷区复垦土壤碳氮的稳定性机制. 采集复垦4年和8年的定位试验各处理耕层(0-20 cm)土样,利用H2SO4水解法分析活性组分I、II和难降解组分中有机碳(SOC)、全氮(TN)的变化特征. 试验设不施肥(CK)、平衡施氮磷钾肥(CF)、单施有机肥(M)、有机无机肥配施(MCF)和生物有机肥配施化肥(MCFB)5个处理. 结果显示,复垦土壤及各组分中有机碳、全氮含量的变化趋势总体均表现为随复垦年限的增加而提高. 复垦4年和8年,同CK相比,CF、M、MCF和MCFB处理均显著提高了SOC和TN含量,增幅分别达40.12%-89.97%(4年)、34.16%-71.65%(8年)和22.66%-60.06%、25.86%-37.93%,且以M处理增幅最大;M、MCF和MCFB处理均显著提高了活性组分II中碳氮含量,增幅分别为91.74%-141.22%、60.03%-88.27%和24.77%-51.15%、19.73%-66.67%;同CF相比,MCF和MCFB处理均显著提高了复垦8年土壤活性组分II中碳氮含量,增幅分别为22.94%-44.62%和41.22%-52.19%. 当SOC、活性组分I、II中碳含量分别达到9.01、1.82和2.25 g/kg时,作物产量达到最大值. 本研究表明当养分投入量相同时,单施有机肥更有利于采煤塌陷区复垦土壤及各组分碳氮的累积;另外,土壤有机碳投入水平以及时间还应根据上述阈值进行调整,从而满足土壤科学培肥的要求,达到较高的固碳效率. (图6 表2 参37)
Abstract:
To increase our understanding of the stabilization mechanism of soil organic carbon (SOC) and total nitrogen (TN), variations in SOC and TN were studied in labile and recalcitrant fractions of reclaimed soils, along with reclamation age and fertilization regimes. Topsoil samples (0-20 cm) were collected from different treatments of a 4-year and an 8-year experiment. SOC and TN in labile (I and II) and recalcitrant fractions were analyzed using the sulfuric acid hydrolysis method. Five different fertilization treatments (no fertilizer [CK], chemical fertilizer with nitrogen, phosphorous, and potassium (CF); organic manure alone (M); chemical fertilizer combined with manure (MCF); compound fertilizer consisting of a biological organic fertilizer, a chemical fertilizer, and manure [MCFB]) were applied within each reclamation age. SOC and TN content in bulk soil samples and in each fraction increased with reclamation age. Compared with the CK group, after 4 years and 8 years of reclamation, CF, M, MCF, and MCFB treatments all significantly increased SOC and TN content by 40.12%-89.97% (4 years), 34.16%-71.65% (8 years), 22.66%-60.06%, and 25.86%-37.93%, respectively. The greatest effect was seen with M treatment. M, MCF, and MCFB treatments markedly increased C and N content in labile fraction II by 91.74%-141.22%, 60.03%-88.27%, 24.77%-51.15%, and 19.73%-66.67%, respectively. Moreover, MCF and MCFB treatments markedly increased OC and TN content in labile fraction II by 22.94%-44.62% and 41.22%-52.19%, respectively, compared with CF, after 8 years of reclamation. In addition, the thresholds of SOC content in labile fraction I and II for maximum crop yield were 9.01, 1.82, and 2.25 g/kg, respectively. In treatment conditions with the samenutrient inputs, application of manure alone was more beneficial for the accumulation of SOC, TN, and OC in all fractions. In addition, for optimal fertilization, the level and time of SOC input should be adjusted according to the above thresholds to achieve higher carbon sequestration efficiency.

参考文献/References:

1 李晋川, 白中科, 柴书杰, 岳建英, 王文英, 王宇宏. 平朔露天煤矿土地复垦与生态重建技术研究[J]. 科技导报, 2009, 27 (17): 30-34 [Li JC, Bai ZK, Chai SJ, Yue JY, Wang WY, Wang YH. Study on the technology of land reclamation and ecological rehabilitation of waste land in Pingshuo Surface Mine [J]. Sci Technol Rev, 2009, 27 (17): 30-34]
2 周伟, 曹银贵, 白中科, 王金满. 煤炭矿区土地复垦监测指标探讨[J]. 中国土地科学, 2012, 26 (11): 68-73 [Zhou W, Cao YG, Bai ZK, Wang JM. Indicators for monitoring land reclamation in coal mining area [J]. China Land Sci, 2012, 26 (11): 68-73]
3 黄昌勇. 土壤学[M]. 北京: 中国农业出版社. 2000 [Huang CY. Soil Science [M]. Beijing: China Agricultural Press, 2000]
4 Baveye PC, Berthelin J, Tessier D, Lemaire G. The “4 per 1000” initiative: a credibility issue for the soil science community? [J]. Geoderma, 2018, 309: 118-123
5 He YT, Zhang WJ, Xu MG, Tong XG, Sun FX, Wang JZ, Huang SM, Zhu P, He XH. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China [J]. Sci Total Environ, 2015, 532: 635-644
6 Tian K, Zhao Y, Xu X, Hai N, Huang B, Deng W. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis [J]. Agric Ecosyst Environ, 2015, 204: 40-50
7 Zhou H. Peng X, Perfect E, Xiao T, Peng G. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography [J]. Geoderma, 2013, 195-196: 23-30
8 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27 (6): 2642-2650 [Liu MQ, Hu F, Chen XY. A review on mechanisms of soil organic carbon stabilization [J]. Acta Ecol Sin, 2007, 27 (6): 2642-2650]
9 Lutzow MV, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review [J]. Eur J Soil Sci, 2006, 57 (4): 426-445
10 Rovira P, Vallejo VR. Labile and recalcitrant pools of carbon and nitrogen inorganic matter decomposing at different depths in soil: Aa acid hydrolysis approach [J]. Geoderma, 2002, 107: 109-141
11 Falloon PD, Smith P. Modelling refractory soil organic matter [J]. BiolFert Soil, 2000, 30: 388-398
12 范继香, 郜春花, 张强, 李建华, 卢朝东, 靳东升. 施肥措施对矿区复垦土壤活性有机碳库的影响[J]. 中国农学通报, 2012, 28 (36): 119-123 [Fan JX, Gao CH, Zhang Q, Li JH, Lu CD, Jin DS. Effect of different fertilization treatment on soil labile organic carbon in mine reclamation [J]. Chin AgricSci Bull, 2012, 28 (36): 119-123]
13 陈小云, 郭菊花, 刘满强, 焦加国, 黄欠如, 赖涛, 李辉信, 胡锋. 施肥对红壤性水稻土有机碳活性和难降解性组分的影响[J]. 土壤学报, 2011, 48 (1): 125-131 [Chen XY, Guo JH, Liu MQ, Jiao JG, Huang QR, Lai T, Li HX, Hu F. Effects of fertilization on lability and recalcitrancy of organic carbon of red paddy soils [J]. ActaPedol Sin, 2011, 48 (1): 125-131]
14 张娟, 徐宁彤, 孟庆峰, 姜佰文. 有机肥施用年限对土壤有机碳组分及其来源于玉米产量的影响[J]. 农业工程学报. 2019, 35 (2): 107- 113 [Zhang J, Xu NT, Meng QF, Jiang BW. Effect of years of manure fertilizer application on soil organic carbon component, its source and corn yield [J]. Trans Chin Soc Agric Eng, 2019, 35 (2): 107-113]
15 Dou X, He P, Cheng X, Zhou W. Long-term fertilization alters chemically-separated soil organic carbon pools: based on stable C isotope analyses [J]. Sci Rep, 2016, 1: 1-9
16 张付申. 长期施肥条件下娄土和黄绵上有机质氧化稳定性研究[J]. 土壤肥料, 1996 (6): 32-36 [Zhang FS. Oxidation stability of organic matter on Lou soil and yellow loess soil under long-term fertilization [J].Soils Fertil, 1996 (6): 32- 36]
17 Zhang X, Sun N, Wu L, Xu M, Bingham I, Li Z. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: evidence from long-term experiments with wheat-maize cropping systems in China [J]. Sci Total Environ, 2016, 562, 247-259
18 Smith P. Carbon sequestration in croplands: the potential in Europe and the global context [J]. Eur J Agron, 2004, 20: 229-236
19 Lal R. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Secur, 2010, 2: 169-177
20 Lal R. Soils and food sufficiency: a review [J]. Agron Sustain Dev, 2009, 29: 113-133
21 Xie J, Peng B, Wang R, Batbayar J, Hoogmoed M, Yang Y, Zhang S, Yang X, Sun B. Responses of crop productivity and physical protection of organic carbon by macroaggregates to long-term fertilization of an Anthrosol[J]. Eur J Soil Sci, 2018, 69: 555-567
22 Loveland P, Webb J. Is there a critical level of organic matter in the agricultural soils of temperate regions: a review [J]. Soil Till Res, 2003, 70: 1-18
23 Krull ES, Skjemstad JO, Baldock JA. Functions of soil organic matter and the effect on soil properties [R]. Grains Research and Development Corporation (GRDC), 2004
24 焦欢, 李廷亮, 高继伟, 李彦, 何冰, 李顺. 培肥措施对复垦土壤轻重组有机碳氮的影响[J]. 水土保持学报, 2018, 32 (5): 208-221 [Jiao H, Li TL, Gao JW, Li Y, He B, Li S. Effects of fertilization on light and heavy fractions organic nitrogen in reclaimed soil [J]. J Soil Water Conserv, 2018, 32 (5): 208-221]
25 何冰, 李廷亮, 栗丽, 高继伟, 李彦, 李顺. 采煤塌陷区复垦土壤团聚体碳氮分布对施肥的响应[J]. 水土保持学报, 2018, 32 (4): 184-196 [He B, Li TL, Li L, Gao JW, Li Y, Li S. Response of carbon and nitrogen distribution of reclaimed soil aggregates to fertilizers in coal mining subsidence area [J]. J Soil Water Conserv, 2018, 32 (4): 184-196]
26 Datta A, Mandal B, Badole S, Chaitanya AK, Majumder SP, Padhan D, Basak N, Barman A, Kundu R, Narkhede WN. Interrelationship of biomass yield, carbon input, aggregation, carbon pools and its sequestration in Vertisols under long-term sorghum-wheat cropping system in semi-arid tropics [J]. Soil Till Res, 2018, 184: 164-175
27 Chaudhary S, Dheri GS, Brar BS. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system [J]. Soil Till Res, 2017, 166: 59-66
28 Jha P, Lakaria BL, Biswas AK, Saha R, Mahapatra P, Agrawal BK, Sahi DK, Wanjari RH, Lal R, Singh M, Rao AS. Effects of carbon input on soil carbon stability and nitrogen dynamics [J]. Agric Ecosyst Environ, 2014, 189: 36-42
29 Zhang D, Yao P, Zhao N, Cao W, Zhang S, Li Y, Huang D, Zhai B, Wang Z, Gao Y. Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China [J]. Geodema, 2019, 337: 425-433
30 王小利, 郭振, 段建军, 周志刚, 刘彦伶, 张雅蓉. 黄壤性水稻土有机碳及其组分对长期施肥的响应及其演变[J]. 中国农业科学, 2017, 50 (23): 4593-4601 [Wang XL, Guo Z, Duan JJ, Zhou ZG, Liu YL, Zhang YR. The changes of organic carbon and its fractions in yellow paddy soils under long-term fertilization [J]. Sci Agric Sin, 2017, 50 (23): 4593- 4601]
31 栗丽, 李廷亮, 孟会生, 谢英荷, 洪坚平. 菌剂与肥料配施对矿区复垦土壤养分及微生物学特性的影响[J]. 应用与环境生物学报, 2016, 22 (6): 1156-1160 [Li L, Li TL, Meng HS, Xie YH, Hong JP. Effects of combined application of microbial agents and fertilizers on soil nutrients and microbial characteristics in reclaimed soil. [J]. Chin J Appl Environ Biol, 2016, 22 (6): 1156-1160]
32 Sollins P, Homnn P, Caldwell BA. Stabilization and destabilization of soil organic matter: mechanisms and controls [J]. Geoderma, 1996, 74: 65-105
33 谢钧宇. 冬小麦/夏玉米体系长期施肥塿土固碳潜力及机制研究[D]. 杨陵: 西北农林科技大学, 2017 [Xie JY. Carbon sequestration and its mechanisms on and anthrosol under long-term fertilization regimes in winter wheat-summer maize cropping system [D]. Yangling: Northwest A & F University, 2017]
34 林伟, 马红亮, 裴广廷, 高人, 尹云峰, 林燕语. 氮添加对亚热带森林土壤有机碳氮组分的影响[J]. 环境科学研究, 2016, 29 (1): 67- 76 [Lin W, Ma HL, PEI GT, Gao R, Yin YF, Lin YY. Effects of nitrogen addition on soil carbon and nitrogen pools in mid-subtropical forest [J]. Res Environ Sci, 2016, 29 (1): 67- 76]
35 Zhong YQW, Yan WM, Shangguan ZP. Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field [J]. Catena, 2015, 135: 38-46
36 West TO, Six J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity [J]. Climat Change, 2007, 80: 25-41
37 Yan X, Zhou H, Zhu QH, Wang XF, Zhang YZ, Yu XC, Peng X. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China [J]. Soil Till Res, 2013, 130: 42-51

相似文献/References:

[1]贾俊香,谢英荷,李廷亮,等.秸秆与秸秆生物炭对采煤塌陷复垦区 土壤活性有机碳的影响*[J].应用与环境生物学报,2016,22(05):787.[doi:10.3724/SP.J.1145.2015.11011]
 JIA Junxiang,XIE Yinghe**,LI Tingliang & WANG Ling.Effect of the straw and its biochar on active organic carbon in reclaimed mine soils*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):787.[doi:10.3724/SP.J.1145.2015.11011]
[2]栗 丽 李廷亮 孟会生 谢英荷 洪坚平**.菌剂与肥料配施对矿区复垦土壤养分及微生物学特性的影响[J].应用与环境生物学报,2016,22(06):1156.[doi:10.3724/SP.J.1145.2016.06006]
 LI Li,LI Tingliang,MENG Huisheng,et al.Effects of combined application of microbial agents and fertilizers on soil nutrients and microbial characteristics in reclaimed soil[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):1156.[doi:10.3724/SP.J.1145.2016.06006]
[3]谢钧宇 焦欢 洪坚平 张杰 李丽娜 黄晓磊 栗丽 赵林婷 李廷亮**.施肥对复垦土壤中活性和难降解碳氮组分的影响*[J].应用与环境生物学报,2020,26(02):1.[doi:10.19675/j.cnki.1006-687x.2019.05032]
 XIE Junyu,JIAO Huan,HONG Jianping,et al.Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions in reclaimed soils*[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1.[doi:10.19675/j.cnki.1006-687x.2019.05032]

更新日期/Last Update: 2019-10-25