|本期目录/Table of Contents|

 CAO Jiling,FENG Youzhi & LIN Xiangui.Effects of magnetic iron oxide nanoparticles on the structure and function of fungal community in maize rhizosphere soil[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):357-363.[doi:10.19675/j.cnki.1006-687x.2019.05024]





Effects of magnetic iron oxide nanoparticles on the structure and function of fungal community in maize rhizosphere soil
1福建师范大学地理科学学院 福建 350007 2中国科学院南京土壤研究所,土壤与农业可持续发展国家重点实验室 江苏 210008
CAO Jiling1 2 FENG Youzhi2 & LIN Xiangui2?
1 School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China 2 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
magnetic iron oxide nanoparticles high-throughput sequencing FUNGuild fungal community structure ecological function
纳米产品的广泛应用导致纳米材料不可避免地进入农田土壤,对农田生态系统产生潜在影响. 本研究以纳米磁性氧化铁(Fe3O4)为研究对象,以玉米(Zea mays L.)为供试植物,采用盆栽试验方法,模拟不同纳米Fe3O4水平(0.1、1.0、10.0 mg/kg)的土壤,并以相同水平的微米Fe3O4为纳米效应的对照,利用Illumina高通量测序技术对土壤真菌群落结构进行分析,并结合FUNGuild解析土壤真菌功能对纳米Fe3O4的响应. 通过比较不同Fe3O4处理的土壤真菌多样性和群落结构发现,微米Fe3O4和纳米Fe3O4对土壤真菌多样性的影响较小,但10.0 mg/kg施加水平的纳米Fe3O4显著(P < 0.05)改变了土壤真菌群落结构,使真菌群落结构发生显著分异(P < 0.05),主要表现为降低了篮状菌Talarmyces、镰刀菌Fusarium、隐球菌Cryptococcus和被孢霉Mortierella等的相对丰度. FUNGuild分析发现10.0 mg/kg的纳米Fe3O4降低了腐生营养型真菌的相对丰度,但增加了共生营养型和病理营养型真菌的相对丰度. 由此可见,一定浓度的纳米Fe3O4可显著改变土壤真菌群落结构和功能,对植物生长和土壤养分循环产生潜在影响. (图3 表2 参52)
The inevitable release of nanoparticles into agricultural fields with the widespread application of nano-products may pose risks to agricultural ecosystems. Soil fungi play key roles in soil nutrient cycling and plant health and productivity, but their responses to nanoparticles remain ambiguous. The objective of this investigation was to determine the influence of magnetic iron oxide nanoparticles on the soil fungal community and its functions. In this study, a pot experiment was established to investigate the responses of soil fungal assemblages to different application levels of magnetic iron oxide nanoparticles (nano Fe3O4; 0.1, 1.0, and 10.0 mg/kg) as well as their counterparts, bulk Fe3O4 particles, using Illumina sequencing. Meantime, FUNGuild was used to investigate the influence of nano Fe3O4 on soil fungal functional groups. The sequencing data revealed that neither bulk Fe3O4 nor nano Fe3O4 exerted a significant influence on soil fungal diversity. However, nano Fe3O4 at 10.0 mg/kg greatly (P < 0.05) shifted the fungal community composition, resulting in a significant decrease in the relative abundances of Talarmyces, Fusarium, Cryptococcu, and Mortierella. In addition, based on the FUNGuild analysis, a lower proportion of saprotrophs and higher relative abundances of pathotroph and symbiotroph fungi were identified in soils amended with 10.0 mg/kg nano Fe3O4 in comparison to that of the control. The nano Fe3O4 at high concentrations negatively influenced soil fungal community structure and saprotroph fungi but may potentially increase the abundance of pathotroph fungi, which may hinder plant growth and soil fertility. These findings greatly contribute towards building a comprehensive understanding of the potential impacts of nanoparticles on agricultural ecosystems.


1 Scrinis G, Lyons K. The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems [J]. Int J Soc Food Agr, 2007, 15 (2): 22-44
2 Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA cleaving agents [J]. J Am Chem Soc, 2002, 124: 2856-2857
3 Sjogren CE, Johansson, C, Naevestad, A, Sontum, PC, BrileySaebo, K, Fahlvik, AK, Crystal size and properties of superparamagnetic iron oxide (SPIO) particles [J]. J Magn Reson Imaging, 1997, 15: 55-67
4 Gottschalk F, Sun TY, Nowack B. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies [J]. Environ Pollut, 2013, 181: 287-300
5 Nowack B, Bucheli TD. Occurrence, behavior, and effects of nanoparticles in the environment [J]. Environ Pollut, 2007, 150 (1): 5-22
6 Hell R, Stephan UW, Rüdiger H, Stephan UW. Iron uptake, trafficking and homeostasis in plants [J]. Planta, 2003, 216 (4): 541-551
7 Martin JH, Coale KH, Johnson KS. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean [J]. Nature, 1994, 371 (6493): 123-129
8 徐江兵, 王艳玲, 罗小三, 冯有智, 纳米Fe3O4对生菜生长及土壤细菌群落结构的影响[J]. 应用生态学报, 2017, 28 (9): 3003-3010 [Xu JB, Wang YL, Luo XS, Feng YZ. Influence of Fe3O4 nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community structure [J]. Chin J Appl Ecol, 2017, 28 (9): 3003-2010]
9 Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M. Effects of magnetite nanoparticles on soybean chlorophyll [J]. Environ Sci Technol, 2013, 47: 10645-10652
10 Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli [J]. Environ Sci Technol, 2008, 42 (17): 6730-6735
11 Iannone MF, Groppa MD, de Sousa ME. Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage [J]. Environ Exp Bot, 2016, 131, 77-88
12 Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B. Effects of metal oxide nanoparticles on soil properties [J]. Chemosphere, 2013, 90 (2): 640-646
13 Zhou DM, Jin SY, Wang YJ, Wang P, Weng NY, Wang Y. Assessing the impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in soils [J]. Soil Sediment Contam, 2012, 21 (1): 101-114
14 Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application [J]. J Nanobiotechnol, 2011, 9 (34): 1-7
15 He SY, Feng, YZ, Ren, HX, Zhang, Y, Gu, N, Lin, XG, The impact of iron oxide magnetic nanoparticles on the soil bacterial community [J]. J Soil Sediment, 2011, 11: 1408-1417
16 Treseder KK, Holden, SR. Fungal carbon sequestration. Science, 2013, 339 (6127): 1528-1529
17 McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK. Functional diversity in resource use by fungi [J]. Ecology, 2010, 91 (8): 2324-2332
18 Lakshmanan R, Okoli C, Boutonnet M, Jaras S, Rajarao GK. Effect of magnetic iron oxide nanoparticles in surface water treatment: Trace minerals and microbes [J]. Bioresource Technol, 2013, 129: 612-615
19 Ge Y, Priester JH, Mortimer M, Chang CH, Ji ZX, Schimel JP, Holden PA. Long-term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil [J]. Environ Sci Technol, 2016, 50 (7): 3965-3974
20 Kumar N, Palmer GR, Shah V, Walker VK. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages [J]. PLoS ONE, 2014, 9 (6): 10.1371/journal.pone.0099953
21 Ge Y, Priester JH, Van De Werfhorst LC, Walker SL, Nisbet RM, An YJ, Schimel JP, Gardea-Torresdey JL, Holden PA. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities [J]. Environ Sci Technol, 2014, 48: 13489-13496
22 Pechanova O, Taká? T, Samaj J, Pechan T. Maize proteomics: An insight into the biology of an important cereal crop [J]. Proteomics, 2013, 13 (3-4): 637-662
23 翁凌云. 我国玉米生产现状及发展对策分析[J]. 中国食物与营养, 2010, 1: 22-25 [Weng LY. Status of corn production in China and its countermeasures [J]. Food Nutrit China, 2010, 1: 22-25]
24 王媛, 徐利华, 邱云萍, 张菡. 利用还原共沉淀法制备纳米四氧化三铁磁性粉体[J]. 纳米科技, 2017, 6: 33-39 [Wang Y, Xu LH, Qiu YP, Zhang H. Preparation of nanosized magnetism Fe3O4 powders by reduction co-precipitation method [J]. Nanosci Nanotechnol, 2017, 6: 33-39
25 Feng YZ, Cui XC, He SY, Dong G, Chen M, Wang JH, Lin XG. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth [J]. Environ Sci Technol, 2013, 47 (16): 9496-9504
26 He SY, Feng YZ, Ni J, Sun YF, Xue LH, Feng YF, Yu YL, Lin XG, Yang LZ. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles [J]. Chemosphere, 2016, 147: 195-202
27 Jia ZJ, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil [J]. Environ Microbiol, 2009, 11: 1658-1671
28 Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. Characterization of the oral fungal microbiome (Mycobiome) in healthy individuals [J]. Plos Pathogens, 2010, 6 (1): e1000713
29 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of highthroughput community sequencing data [J]. Nat Methods, 2010, 7: 335-336
30 Edgar RC. Search and clustering orders of magnitude faster than BLAST [J]. Bioinformatics, 2010, 26: 2460-2461
31 Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild [J]. Fungal Ecol, 2016, 20: 241-248
32 Faith DP. Conservation evaluation and phylogenetic diversity [J]. Biol Conserv, 1992, 61: 1-10
33 Chao A. Nonparametric-estimation of the number of classes in a population [J]. Scand J Stat, 1984, 11: 265-270
34 Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities [J]. Appl Environ Microb, 2005, 71: 8228-8235
35 Luo YQ, Hui DF, Zhang DQ. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis [J]. Ecology, 2006, 87 (1): 53-63
36 He JZ, Zheng Y, Chen CR, He YQ, Zhang LM. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches [J]. J Soil Sediment, 2008, 8: 349-358
37 Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, Wanek W, Gottsberger R, Strauss J, Gorfer M. Molecular diversity of fungal communities in agricultural soils from Lower Austria [J]. Fungal Divers, 2010, 44: 65-75
38 Peay KG, Baraloto C, Fine PV. Strong coupling of plant and fungal community structure across western Amazonian rainforests [J]. Isme J, 2013, 7 (9): 1852-1861
39 张玥, 胡雲飞, 王树茂, 柯子星, 高水练, 林金科. 茶园年限对根际土壤真菌群落结构及多样性的影响[J]. 应用与环境生物学报, 2018, 24 (5): 972-977 [Zhang Y, Hu YF, Wang SM, Ke ZX, Gao SL, Lin JK. The structure and diversity of the fungal community in rhizosphere soil from tea gardens of different ages [J]. J Appl Environ Biol, 2018, 24 (5): 972-977]
40 Bi J, Zhang NL, Liang Y, Yang HJ, Ma KP. Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe [J]. J Plant Ecol, 2012, 5 (3): 320-329
41 Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types [J]. Soil Biol Biochem, 2008, 40 (9): 2407-2415
42 Shah V, Collins D, Walker VK, Shah S. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions [J]. Environ Res Lett, 2014, 9 (2): 024001
43 曹际玲, 冯有智, 林先贵. 纳米银对潮土玉米根际真菌群落结构和多样性的影响[J]. 菌物学报, 2017, 36 (5): 633-641 [Cao JL, Feng YZ, Lin XG. Effects of silver nanoparticles on fluvo-aquin soil fungal community structure and diversity in maize rhizosphere [J]. Mycosystema, 2017, 36 (5): 633-641]
44 Griffiths BS, Philippot L. Insights into the resistance and resilience of the soil microbial community [J]. FEMS Microbiol Rev, 2013, 37 (2): 112-129
45 Urbanova M, Snajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees [J]. Soil Biol Biochem, 2015, 84: 53-64
46 Cao JL, Feng YZ, Lin XG, Wang JH, Xie XQ. Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant [J]. J Soil Sediment, 2017, 17 (3): 841-851
47 Schoonen MAA, Cohn CA, Roemer E, Laffers R, Simon SR, O’Riordan T. Mineral-induced formation of reactive oxygen species [J]. Rev Mineral Geochem, 2006, 64: 179-221
48 Fan J, Zhang SZ. Facile preparation of Fe3O4/mesoporous TiO2nanoparticles shell on polystyrene beads and its effective absorption of cyanobacteria in water [J]. J Polym Res, 2015, 22: 1-5
49 Miransari M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress [J]. Plant Biol, 2010, 12 (4): 563-569
50 Smith SE, Read DJ. Mycorrhizal symbiosis [M]. New York: Academic Press, 2008.
51 曹际玲, 冯有智, 林先贵. 丛枝菌根真菌和纳米磁性氧化铁对玉米生长和Fe吸收的影响[J]. 生态与农村环境学报, 2017, 33 (6): 77-85 [Cao JL, Feng YZ, Lin XG. Influence of arbuscular mycorrhizal fungi and iron oxide magnetic nanoparticles on maize growth and Fe-up-take [J]. J Ecol Rural Environ, 2017, 33 (6): 555-563]
52 闫华, 欧阳明, 张旭辉, 应多, 赵熙君, 张玉娇, 郑聚锋, 刘晓雨, 卞荣军, 李恋卿, 潘根兴. 不同程度重金属污染对稻田土壤真菌群落结构的影响[J]. 土壤, 2018, 50 (3): 513-521 [Yan H, Ou YM, Ying D, Zhao XJ, Zhang YJ, Zheng JF, Liu XY, Bian RJ, Pan GX. Effects of different gradients of heavy metal contamination on soil fungi community structure in paddy soils [J]. Soils, 2018, 50 (3): 513-521]


 ZHAO Tong,JIANG Yueli,YAN Hao,et al.Research advances on microbial function in soil ammonifying process[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):315.[doi:10.3724/SP.J.1145.2014.00315]
[2]许 颖** 马德胜 宋文枫 魏小芳.16S rDNA高通量测序技术分析油藏微生物多样性?[J].应用与环境生物学报,2016,22(03):409.[doi:10.3724/SP.J.1145.2015.09003]
 XU Ying**,MA Desheng,SONG Wenfeng & WEI Xiaofang.16S rDNA-assisted high-throughput sequencing analysis of microbial diversity in oil reservoirs*[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):409.[doi:10.3724/SP.J.1145.2015.09003]
[3]孟会生,洪坚平,王向英,等.磷细菌肥对采煤塌陷区复垦土壤 放线菌群落的影响*[J].应用与环境生物学报,2016,22(05):911.[doi:10.3724/SP.J.1145.2016.03043]
 MENG Huisheng,HONG Jianping**,WANG Xiangying & LI Li.Effect of phosphobacteria fertilizer on soil actinomycetes community in mining subsidence area*[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):911.[doi:10.3724/SP.J.1145.2016.03043]
 SONG Yongting,HU Jing,WU Xiaoling,et al.Stability of microbial community structure in reservoir water samples at room temperature[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):495.[doi:2016.07026]
 HE Yongguo,JIN Lei,LI Guo,et al.Gut microbiome of adult giant pandas based on high-throughput sequencing technology[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):771.[doi:10.3724/SP.J.1145.2016.05023]
 SONG Yongting**.Regulation of microbial growth and metabolism and oil displacement under different gas distribution conditions[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):974.[doi:10.3724/SP.J.1145.2016.12036]
 XU Jiangbing,WANG Yanling,et al.Influence of zinc oxide nanoparticles on the succession of bacterial communities during the composting process[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):1166.[doi:10.3724/SP.J.1145.2017.04025]
 GU Lei,XU Kewei,et al.Microbial diversity in Yubei Oil field determined by high-throughput sequencing[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):276.[doi:10.3724/SP.J.1145.2016.09027]
 YANG Yong,ZHANG Xuejun,LI Meihua,et al.Effects of microbiological fertilizer on rhizosphere soil fungus communities under long-term continuous cropping of protected Hami melon[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):68.[doi:10.19675/j.cnki.1006-687x.2017.03014]
 REN Haiwei,LIU Feifei,LI Mengyu,et al.Microbial community of maize straw and cabbage waste under different storage conditions[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):281.[doi:10.19675/j.cnki.1006-687x.2017.05035]

更新日期/Last Update: 2020-04-25