|本期目录/Table of Contents|

[1]郭虎林,韩玉国,郭子繁.北京地区典型果园NANI解析与消减对策[J].应用与环境生物学报,2020,26(02):386-393.[doi:10.19675/j.cnki.1006-687x.2019.05022]
 GUO Hulin,HAN Yuguo,& GUO Zifan.Analysis and reduction of net anthropogenic nitrogen inputs (NANI) in a typical orchard in Beijing[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):386-393.[doi:10.19675/j.cnki.1006-687x.2019.05022]
点击复制

北京地区典型果园NANI解析与消减对策
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年02期
页码:
386-393
栏目:
研究论文
出版日期:
2020-04-25

文章信息/Info

Title:
Analysis and reduction of net anthropogenic nitrogen inputs (NANI) in a typical orchard in Beijing
作者:
郭虎林韩玉国郭子繁
1北京林业大学水土保持学院,水土保持国家林业局重点实验室 北京 100083 2北京市水土保持工程技术研究中心 北京 100083
Author(s):
GUO Hulin1 HAN Yuguo1 2? & GUO Zifan1
1 School of Soil and Water Conservation, Beijing Forestry University, Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing 100083 2 Beijing Engineering Research Center of Soil and Water Conservation, Beijing 100083
关键词:
NANI果园北京地区人类活动环境压力
Keywords:
net anthropogenic nitrogen inputs (NANI) orchard Beijing area anthropogenic environmental pressure
DOI:
10.19675/j.cnki.1006-687x.2019.05022
摘要:
人类活动引起的过量氮素输入已经成为引起区域生态环境恶化的主要原因. 为探究北京地区人类活动产生的氮素对果园造成的潜在影响,基于大气沉降、肥料、食物/饲料和生物固氮四部分氮素输入之和的人类活动净氮输入(net anthropogenic nitrogen input,NANI)模型,估算了聂各庄果园2018年人类活动导致的净氮输入量. 结果显示,研究区域NANI值为234 kg hm-2 a-1. 其中,肥料输入强度为179 kg hm-2 a-1,占NANI的62.1%;大气沉降输入强度为65 kg hm-2 a-1,占NANI的22.5%;其他依次为生物固氮(18 kg hm-2 a-1;6.1%)和食物/饲料(-27 kg hm-2 a-1;-9.3%). 研究区NANI值偏高,其为我国主要流域NANI值的1.4-3.9倍. 肥料是该区域NANI的主要来源,其施用量高出全国和北京地区平均水平的13%和10%. 大气氮沉降是NANI的第二大来源,其为全国平均沉降量的4.7倍. 肥料和大气沉降都对区域生态环境造成了一定的压力,宜采取相应措施防止多余的氮素流向下游水体. 在全国和北京地区平均施肥水平为基准的情况下,通过减少肥料用量17-22 kg hm-2 a-1可以有效降低研究区NANI值. 通过减少或替换汽油驱动的汽车100万辆,可以减小大气沉降中硝态氮7.16 kg hm-2 a-1. 本研究表明该区域NANI最主要的来源为肥料和大气沉降,通过一系列措施能够对区域内过量的氮素进行消减,达到净化环境的目. (图4 表5 参40)
Abstract:
Excessive nitrogen inputs caused by human activities have become the main cause of regional ecological environmental deterioration. In order to explore the potential impact of nitrogen produced by human activities on Beijing orchards, this study is based on the net anthropogenic nitrogen input (NANI) model. This model is the combination of nitrogen inputs due to atmospheric deposition, fertilizer, food/feed, and nitrogen fixation and was used to estimate the net nitrogen inputs caused by human activities in the Niegezhuang Orchard in 2018. The results show that the NANI value of the research area was 234 kg hm-2 a-1. The input intensity of fertilizer was 179 kg hm-2 a-1, accounting for 62.1% of the NANI value. The input intensity of atmospheric deposition was 65 kg hm-2 a-1, accounting for 22.5% of the NANI value. The other inputs were nitrogen fixation (18 kg hm-2 a-1; 6.1%) and food/feed (-27 kg hm-2 a-1; -9.3%). The value of the NANI in the study area was high, which was 1.4-3.9-fold that of the main watershed in China. Fertilizer was the main source of the NANI in the region, and its application rate was 13% and 10% higher than that of the national and Beijing averages, respectively. Atmospheric nitrogen deposition was the second largest source of the NANI and was 4.7-fold higher than the national average. Both fertilizer and atmospheric deposition have exerted certain pressures on the regional ecological environment. It is advisable to take corresponding measures to prevent excess nitrogen from flowing to the downstream water bodies. In the case of the average fertilization level in both the country and Beijing, the NANI value in the study area can be effectively reduced by reducing the amount of fertilizer by 17-22 kg hm-2 a-1. By reducing or replacing one million gasoline-powered vehicles, nitrate-nitrogen due to atmospheric deposition may be reduced by 7.16 kg hm-2 a-1. This study shows that the most important sources of NANI in this region were fertilizer and atmospheric deposition. Through a series of measures, excess nitrogen in the region may be reduced to achieve the goal of purifying the environment.

参考文献/References:

1 陈昭明, 王伟, 赵迎, 徐泽宇. 三峡水库支流水体富营养化现状及防治策略[J]. 环境工程, 2019, 37 (4): 32-37 [Chen ZM, Wang W, Zhao Y, Xu ZY. Water eutrophication status and control strategy of tributaries in the Three Gorges reservoir region [J]. Environ Eng, 2019, 37 (4): 32-37
2 Denk TRA, Mohn J, Decock C, Lewicka-Szczebak D, Harris E, Butterbach-Bahl K, Kiese R, Wolf B. The nitrogen cycle: a review of isotope effects and isotope modeling approaches [J]. Soil Biol Biochem, 2017, 105: 121-137
3 Jordan TE, Weller DE. Human contributions to terrestrial nitrogen flux [J]. Bioscience, 1996, 46: 655-664
4 Van BN, Boyer EW, Goodale CL, Jaworski NA, Paustian K, Seitzinger SP, Lajtha K, Mayer B, Vandam D, Howarth RW, Nadelhoffer KJ, Eve M, Billent G. Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U. S. A [J]. Biogeochemistry, 2002, 57: 267-293
5 Hong B, Swaney DP, McCrackin M, Svanb?ck A, Humborg C, Gustafsson B, Yershova A, Pakhomau A. Advances in NANI and NAPI accounting for the Baltic drainage basin: spatial and temporal trends and relationships to watershed TN and TP fluxes [J]. Biogeochemistry, 2017, 133: 245-261
6 Swaney DP, Hong B, Selvam AP, Howarth RW, Howarth RW, Ramesh R, Purvaja R. Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian watersheds: an initial assessment [J]. J Mar Syst, 2015, 141: 45-58
7 Han YG, Fan YT, Yang PL, Wang XX, Wang YJ, Tian JX, Xu L, Wang CZ. Net anthropogenic nitrogen inputs (NANI) index application in mainland China [J]. Geoderma, 213 (2014): 87-94
8 韩玉国, 李叙勇, 南哲, 李波. 北京地区2003-2007年人类活动氮累积状况研究[J]. 环境科学, 2011, 32 (6): 1537-1545 [Han YG, Li XY, Nan Z, Li B. Net anthropogenic nitrogen accumulation in the Beijing metropolitan region in 2003 to 2007 [J]. Environ Sci, 2011, 32 (6): 1537-1545]
9 高伟, 郭怀成, 后希康. 中国大陆市域人类活动净氮输入量 (NANI)评估[J]. 北京大学学报 (自然科学版), 2014, 50 (5): 951-959 [Gao W, Guo HC, Hou XK. Evaluating city-scale net anthropogenic nitrogen input (NANI) in mainland China. Acta Sci Nat Univ Pekinensis, 2014, 50 (5): 951-959]
10 高伟, 高波, 严长安, 刘永. 鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J]. 环境科学学报, 2016, 36 (9): 3137-3145 [Gao W, Gao B, Yan CA, Liu Y. Evolution of anthropogenic nitrogen and phosphorus inputs to Lake Poyang Basin and its’ effect on water quality of lake [J]. Acta Sci Circum, 2016, 36 (9): 3137-3145]
11 陈岩, 高伟, 王东, 刘永, 吴悦颖, 郭怀成. 缺水地区人类活动净氮输入与河流响应特征—以海河流域为例[J]. 环境科学学报, 2016, 36 (10): 3600-3606 [Chen Y, Gao W, Wang D, Liu Y, Wu YY, Guo HC. Net anthropogenic nitrogen inputs ( NANI ) and riverine response in water shortage region: a case study of Haihe River watershed [J]. Acta Sci Circum, 2016, 36 (10): 3600-3606]
12 张汪寿, 李叙勇, 苏静君. 河流氮输出对流域人类活动净氮输入的响应研究综述[J]. 应用生态学报, 2014, 25 (1): 272-278. [Zhang WS, Li XY, Su JJ. Responses of riverine nitrogen export to net anthropogenic nitrogen inputs: a review [J]. Chin J Appl Ecol, 2014, 25 (1): 272-278]
13 张汪寿, 苏静君, 杜新忠, 李叙勇. 1990-2010年淮河流域人类活动净氮输入[J]. 应用生态学报, 2015, 26 (6): 1831-1839 [Zhang WS, Su JJ, Du XZ, Li XY. Net anthropogenic nitrogen input to Huaihe River Basin, China during 1990-2010 [J]. Chin J Appl Ecol, 2015, 26 (6): 1831-1839]
14 张汪寿, 李叙勇, 杜新忠, 郝韶楠. 流域人类活动净氮输入量的估算、不确定性及影响因素[J]. 生态学报, 2014, 34 (24): 7454-7464 [Zhang WS, Li XY, Du XZ, Hao SN. Accounting methods, uncertainties and influential factors of net anthropogenic nitrogen input ( NANI). Acta Ecol Sin, 2014, 34 (24): 7454-7464]
15 Huang H, Chen D, Zhang B. Modeling and forecasting riverine dissolved inorganic nitrogen export using anthropogenic nitrogen inputs, hydroclimate, and landuse change [J]. J Hydrol, 2014, 517: 95-104
16 Chen D, Huang H, Hu M. Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics [J]. Environ Sci Technol, 2014, 48: 5683-5690
17 Chen F, Hou LJ, Liu M, Zheng YL, Yin GY, Lin XB, Li XF, Zong HB, Deng FY, Gao J, Jiang XF. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export [J]. J Geophys Res Biogeosci, 2016, 121: 451-465
18 华春林. 我国农业面源污染治理机制研究[D]. 杨凌: 西北农林科技大学, 2009 [Hua CL. Research on the governance mechanism of agricultural diffused pollution in China [D]. Yangling: Northwest A & F University, 2009]
19 北京市统计局. 北京统计年鉴2018[J]. 北京: 中国统计出版社, 2018 [Beijing Municipal Bureau of Statistics. Beijing Statistical Yearbook 2018 [J]. Beijing: China Statistics Press, 2018]
20 刘学军. 大气氮素沉降及其对生态系统的影响[C]//中国土壤学会土壤环境专业委员会、中国科学院土壤圈物质循环开放研究实验室. 第七次“土壤与环境”学术研讨会论文摘要. 中国土壤学会土壤环境专业委员会, 中国科学院土壤圈物质循环开放研究实验室, 中国土壤学会, 2001: 2 [Liu XJ. Atmospheric nitrogen deposition and its impact on ecosystems [C]// Professional committee of soil environment of soil science society of China, Open laboratory of soil matter cycle research of chinese academy of sciences. Abstract of the 7th “soil and environment” symposium. China soil society soil environment committee, Laboratory of soil circle material cycle open research, Chinese academy of sciences, Soil Science Society of China, 2001: 2]
21 Liu XJ, Ju XT, Zhang Y, He C, Kopsch J, Zhang FS. Nitrogen deposition in agroecosystems in the Beijing area [J]. Agric Ecosyst Environ, 2006, 113 (4): 370-377
22 Xu W, Luo XS, Pan YP, Zhang L, Tang AH, Shen JL, Zhang Y, Li KH, Wu QH, Yang DW, Zhang YY, Xue J, Li WQ, Li QQ, Tang L, Lu SH, Liang T, Tong YA, Liu P, Zhang Q, Xiong ZQ, Shi XJ, Wu LH, Shi WQ, Tian K, Zhong XH, Shi K, Tang QY, Zhang LJ, Huang JL, He CE, Kuang FH, Zhu B, Liu H, Jin X, Xin YJ, Shi XK, Du EZ, Dore AJ, Tang S, Collett Jr JL, Goulding K, Sun YX, Ren J, Zhang FS, Liu XJ. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China [J]. Atmos Chem Phys, 2015, 15: 12345-12360
23 郑丹楠, 王雪松, 谢绍东, 段雷, 陈东升. 2010年中国大气氮沉降特征分析[J]. 中国环境科学, 2014, 34 (5): 1089-1097 [Zheng DN, Wang XS, Xie SD, Duan L, Chen DS. Simulation of atmospheric nitrogen deposition in China in 2010 [J]. China Envir Sci, 2014, 34 (5): 1089-1097]
24 王焕晓, 庞树江, 王晓燕, 樊彦波. 小流域大气氮干湿沉降特征[J]. 环境科学, 2018, 39 (12): 5365-5374 [Wang HX, Pang SJ, Wang XY, Fan YB. Dry and wet deposition of atmospheric nitrogen in small catchments [J]. Envir Sci, 2018, 39 (12): 5365-5374]
25 武淑霞. 我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D]. 北京: 中国农业科学院, 2005 [Wu SX. The spatial and temporal change of nitrogen and phosphorus produced by livestock and poultry & their effects on agricultural non-point pollution in China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2005 ]
26 郗金标, 张福锁, 有祥亮. 中国森林生态系统N平衡现状[J]. 生态学报, 2007 (8): 3257-3267 [XI JB, Zhang FS, You XL. Nitrogen balance of natural forest ecosystem in China [J]. Acta Ecol Sin, 2007 (8): 3257-3267]
27 Boyer EW, Goodale CL, Jaworski NA, Howarth RW. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA [J]. Biogeochemistry, 2002, 57 (58): 137-169
28 张福锁, 陈新平, 陈清. 中国主要作物施肥指南[M]. 北京: 中国农业大学出版, 2009 [Zhang FS, Chen XP, Chen Q. China’s main crop fertilization guide [M]. Beijing: China Agricultural University Press, 2009]
29 钱承, 鲁如坤. 农田养分再循环研究Ⅲ粪肥的氨挥发[J]. 土壤, 1994 (4): 169-174 [Qian C, Lu RK. Farmland nutrient recycling study III ammonia volatilization of manure [J]. Soil, 1994 (4): 169-174]
30 杨月欣, 王光亚. 中国食物成分表2009 [M]. 北京: 北京大学医学出版社, 2009 [Yang YX, Wang GY. China Food Ingredients Table 2009 [M]. Beijing: Peking University Medical Press, 2009]
31 国家统计局. 中国统计年鉴2018 [J]. 北京: 中国统计出版社, 2018 [National Municipal Bureau of Statistics. China Statistical Yearbook 2018 [J]. Beijing: China statistics Press, 2018]
32 谭宏伟, 周柳强, 谢如林. 广西农田养分循环与平衡分析[J]. 广西科学院学报, 2000 (2): 82-86+91 [Tan HW, Zhou LQ, Xie RL. Nutrient circulation and balance of farm land in Guangxi [J]. J Guangxi Acad Sci, 2000 (2): 82-86+91]
33 杨林章, 孙波. 中国农田生态系统养分循环与平衡及其管理[M]. 北京: 科学出版社, 2008 [Yang LZ, Sun B. Nutrient Cycling and Balance and Management of Farmland Ecosystem in China [M]. Beijing: Science Press, 2008]
34 杨素苗, 李保国, 齐国辉, 张雪梅, 郭素萍. 灌溉方式对红富士苹果根系活力和新梢生长及果实产量质量的影响[J]. 干旱地区农业研究, 2010, 28 (5): 181-184 [Yang SM, Li BG, Qi GH, Zhang XM, Guo SP. Effects of different irrigation patterns on root activity, new shoot growth, fruit yield and quality of red fuji apple [J]. Agric Res Arid Areas, 2010, 28 (5): 181-184]
35 北京市生态环境局. 北京市2017年环境统计年报[EB/OL]. 北京: 北京市生态环境局官网, 2017. http: //sthjj. beijing. gov. cn/bjhrb/xxgk/ywdt/zlkz/hjtj37/842547/index. html [Beijing Municipal Ecological Environment Bureau. Environmental Statistics Annual Report in 2017, Beijing [EB/OL]. Beijing: Official website of Beijing municipal ecological environment bureau, 2017. http: //sthjj. beijing. gov. cn/bjhrb/ xxgk/ywdt/zlkz/hjtj37/842547/index. html]
36 Xing GX, Zhu ZL. Regional nitrogen budgets for China and its major watersheds [J]. Biogeochemistry, 2002, 57-58 (1): 405-427
37 李影, 刘宏斌, 雷秋良, 胡万里, 王洪媛, 翟丽梅, 任天志, 连慧姝. 洱海流域乡镇尺度上人类活动对净氮输入量的影响[J]. 环境科学, 2018, 39 (9): 4189-4198 [Li Y, Liu HB, Lei QL, Hu QL, Wang HY, Zhai LM, Ren TZ, Lian HZ. Impact of human activities on net anthropogenic nitrogen inputs ( NANI) at township scale in Erhai lake basin [J]. Environ Sci, 2018, 39 (9): 4189-4198]
38 北京市生态环境局. 机动车排放管理工作动态信息[EB/OL]. 北京: 北京市生态环境局官网, 2017. http://sthjj.beijing.gov.cn/bjhrb/xxgk/ywdt/jdcpfgl/jdcpfglgzdtxx/816203/index.html [Beijing Municipal Ecological Environment Bureau. Dynamic Information of Vehicle Emission Management, Beijing [EB/OL]. Beijing: Official Website of Beijing Municipal Ecological Environment Bureau, 2017. http://sthjj.beijing.gov.cn/bjhrb/xxgk/ywdt/jdcpfgl/jdcpfglgzdtxx/816203/index.html]
39 李海燕, 魏鹏, 黄延, 张悦. 暴雨情况下传输型植被浅沟的净化效果研究[J]. 中国给水排水, 2014, 30 (1): 99-103 [Li HY, Wei P, Huang Y, Zhang Y. Research of purification effect of conveyance swale under heavy rain [J]. Chin Water Wastewater, 2014, 30 (1): 99-103]
40 欧阳力, 解运杰, 葛文峰, 鞠敏睿, 陈英智. 黑龙江东部低山丘陵区水土保持措施效益对比研究[J]. 水土保持应用技术, 2018 (6): 8-10 [Ouyang L, Xie YJ, Ge WH, Ju MR, Chen YZ. Comparative study on benefits of soil and water conservation measures in low mountain and hilly areas of eastern Heilongjiang province [J]. Technol Soil Water Conservation, 2018 (6): 8-10]

更新日期/Last Update: 2020-04-25