|本期目录/Table of Contents|

[1]方智振,姜翠翠,周丹蓉,等.基于转录组的‘三月李’及其红肉突变体ARF基因家族鉴定及分析[J].应用与环境生物学报,2019,25(06):1388-1395.[doi:10.19675/j.cnki.1006-687x.2019.0502]
 FANG Zhizhen,JIANG Cuicui,et al.Analysis of the ARF gene family of ‘Sanyueli’ plum (Prunus salicina Lindl.) and its red-fleshed mutant based on transcriptome[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1388-1395.[doi:10.19675/j.cnki.1006-687x.2019.0502]
点击复制

基于转录组的‘三月李’及其红肉突变体ARF基因家族鉴定及分析
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1388-1395
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Analysis of the ARF gene family of ‘Sanyueli’ plum (Prunus salicina Lindl.) and its red-fleshed mutant based on transcriptome
作者:
方智振姜翠翠周丹蓉潘少霖叶新福
1福建省农业科学院果树研究所 福州 350013 2福建省落叶果树工程技术研究中心 福州 350013
Author(s):
FANG Zhizhen1 2 JIANG Cuicui1 2 ZHOU Danrong1 2 PAN Shaolin1 2 & YE Xinfu1 2**
1 Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China 2 Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
关键词:
转录组ARF家族生物信息学分析表达分析
Keywords:
plum transcriptome ARF family bioinformatics analysis expression analysis
分类号:
S662.3 : Q78
DOI:
10.19675/j.cnki.1006-687x.2019.0502
摘要:
生长素反应因子(Auxin response factors,ARFs)是一类在植物生长发育过程中发挥着重要作用的转录调控因子. 为鉴定ARF家族基因、了解成员特征及其在李果实成熟过程中表达模式,基于‘三月李’及其红肉突变体果实成熟过程的转录组数据,采用生物信息学分析方法进行PsARF家族基因鉴定,并对其蛋白质理化特性、亚细胞定位、系统进化树、蛋白质质保守结构域以及表达模式进行分析. 共鉴定得到17个PsARF家族成员. 生物信息学分析结果表明PsARF家族蛋白质长度在600-1 157 aa之间,分子量(Mr)在66.24 × 103 - 129.31 × 103之间,等电点介于5.44-8.31之间,均为位于细胞核的不稳定亲水蛋白质. 系统进化树分析表明PsARF家族成员可分为4组. PsARF蛋白质均具有典型的B3和Auxin_resp结构域,且多数具有Aux/IAA结构域. 保守基序分析表明,PsARF家族蛋白质包含15个保守基序,但非每个蛋白质均含有保守基序. 10个PsARF家族基因在‘三月李’及其红肉突变体果实成熟过程中差异表达,不同基因表达模式各不相同. 其中,PsARF2和PsARF16在‘三月李’和红肉突变体中的表达模式相反;PsARF10在‘三月李’果肉中表达量显著高于红肉突变体果肉中的表达量. 本研究表明PsARF家族成员可能在李果实成熟过程中具有不同的功能,结果可为深入研究PsARF家族基因在李果实成熟过程中的功能奠定基础. (图5 表2 参40)
Abstract:
Auxin response factors (ARFs) are an essential family of transcription factors that play vital roles in plant growth and development processes. Herein, we aimed to identify genes in the ARF family and investigate the characteristics of ARF members and their expression patterns during fruit ripening in plum. Bioinformatics methods were employed to identify the genes in the PsARF family based on the transcriptome data of ‘Sanyueli’ plum and its red-fleshed mutant during fruit ripening. Additionally, protein physical and chemical properties, subcellular localization, phylogenetic tree, protein conserved domains, and the expression pattern of the PsARF members were analyzed. As a result, we identified a total of 17 members in the PsARF family. Furthermore, through bioinformatics analysis, we found that the length of PsARF proteins ranged from 193 to with variations from 66.24 × 103 to 129.31 × 103 for the predicted molecular weight and 5.44 to 8.31 for the isoelectric point. All proteins were predicted to be unstable, hydrophilic, and located in the nucleus. Moreover, phylogenetic analysis revealed that PsARFs can be divided into four different groups. All PsARF proteins contained the typical B3 and Auxin_resp domain while most contained the Aux/IAA domain. Conservative motif analysis revealed 15 conserved motifs in the PsARF family of proteins; however, some proteins did not contain all motifs. Ten PsARF genes were differentially expressed during fruit ripening in ‘Sanyueli’ plum and its red-fleshed mutant. The expression patterns of PsARF2 and PsARF16 in ‘Sanyueli’ plum opposed that of its red-fleshed mutant. The expression level of PsARF10 in the flesh of ‘Sanyueli’ plum was significantly higher than that in the red-fleshed mutant. These findings indicate that PsARF members may have different functions, thereby laying a foundation for further studies on the function of the PsARF family of genes during the ripening of plum fruits.

参考文献/References:

1 Woodward AW, Bartel B. Auxin: regulation, action, and interaction [J]. Ann Bot, 2005, 95 (5): 707-735
2 Fleming AJ. Plant signalling: the inexorable rise of auxin [J]. Trends Cell Biol, 2006, 16 (8): 397-402
3 Su Z, Wang L, Li W, Zhao L, Huang X, Azam SM, Qin Y. Genome-wideidentification of auxin response factor (ARF) genes family and its tissue-specific prominent expression in pineapple (Ananas comosus) [J]. Tropl Plant Biol, 2017, 10 (2): 86-96
4 Li SB, Xie ZZ, Hu CG, Zhang JZ. A review of auxin response factors (ARFs) in plants [J]. Front Plant Sci, 2016, 7: e47
5 Tiwari SB, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription [J]. Plant cell, 2003, 15 (2): 533-543
6 Guilfoyle TJ, Hagen G. Auxin response factors [J]. Curr Opin Plant Biol, 2007, 10 (5): 453-460
7 Boer DR, Freire-Rios A, van den Berg Willy AM, Saaki T, Manfield Iain W, Kepinski S, López-Vidrieo I, Franco-Zorrilla Jose M, de Vries Sacco C, Solano R, Weijers D, Coll M. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors [J]. Cell, 2014, 156 (3): 577-589
8 Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors [J]. Plant Mol Biol, 2002, 49 (3): 373-385
9 Shen C, Wang S, Bai Y, Wu Y, Zhang S, Chen M, Guilfoyle TJ, Wu P, Qi Y. Functional analysis of the structural domain of ARF proteins in rice (Oryza sativa L.) [J]. J Exp Bot, 2010, 61 (14): 3971-3981
10 Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin-response factors [J]. PNAS, 1999, 96 (10): 5844-5849
11 Liu N, Dong L, Deng X, Liu D, Liu Y, Li M, Hu Y, Yan Y. Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. [J]. BMC Plant Biol, 2018, 18 (1): 336
12 Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ. The ARF2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs [J]. Development, 2006, 133 (2): 251-261
13 Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity [J]. J Exp Bot, 2010, 61 (5): 1419-1430
14 Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development [J]. Mol Genet Genomics, 2011, 285 (3): 245-260
15 Jain M, Khurana JP. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice [J]. FEBS J, 2009, 276 (11): 3148-3162
16 Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y. Auxin-related gene families in abiotic stress response in Sorghum bicolor [J]. Funct Integr Genomics, 2010, 10 (4): 533-546
17 李慧峰, 冉昆, 何平, 王海波, 常源升, 孙清荣, 程来亮, 李林光. 苹果生长素响应因子(ARF)基因家族全基因组鉴定及表达分析[J]. 植物生理学报, 2015, 51 (7): 1045-1054 [Li HF, Ran K, He P, Wang HB, Chang YS, Sun QR, Cheng LL, Li GL. Genome-wide identification and expression analysis of Auxin Response Factor (ARF) gene family in apple [J]. Plant Physio J, 2015, 51 (7): 1045-1054]
18 欧春青, 姜淑苓, 王斐, 赵亚楠. 梨全基因组生长素反应因子(ARF)基因家族鉴定及表达分析[J]. 中国农业科学, 2018, 51 (2): 327-340 [Ou CQ, Jiang SL, Wang F, Zhao YN. Genome-wide identification and expression analysis of Auxin Response Factor (ARF) gene family in pear [J]. Sci Agric Sin, 2018, 51 (2): 327-340]
19 Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J, Li M, Xu B, Jin Z. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress [J]. Front Plant Sci, 2015, 6: e742
20 Li S-B, OuYang W-Z, Hou X-J, Xie L-L, Hu C-G, Zhang J-Z. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis) [J]. Front Plant Sci, 2015, 6: e119
21 Liu K, Yuan C, Li H, Lin W, Yang Y, Shen C, Zheng X. Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.) [J]. BMC Genomics, 2015, 16 (1): 901
22 Guo L, Gao J, Teixeira da Silva JA, Yu X. Bioinformatics analysis of the Auxin Response Factor gene family in Prunus persica [J]. Can J Plant Sci, 2018, 99 (2): 232-242
23 Wan S, Li W, Zhu Y, Liu Z, Huang W, Zhan J. Genome-wide identification, characterization and expression analysis of the Auxin Response Factor gene family in Vitis vinifera [J]. Plant Cell Rep, 2014, 33 (8): 1365-1375
24 Zhang Y, Zeng Z, Chen C, Li C, Xia R, Li J. Genome-wide characterization of the Auxin Response Factor (ARF) gene family of litchi (Litchi chinensis Sonn.): phylogenetic analysis, miRNA regulation and expression changes during fruit abscission [J]. Peer J, 2019, 7: e6677
25 Niu J, Bi Q, Deng S, Chen H, Yu H, Wang L, Lin S. Identification of Auxin Response Factor gene family from Prunus sibirica and its expression analysis during mesocarp and kernel development [J]. BMC Plant Biol, 2018, 18 (1): 21
26 黄贤斌, 张太奎, 刘翠玉, 赵玉洁, 魏洪珉, 周涧青, 苑兆和. 石榴ARF基因家族鉴定及表达分析[J]. 果树学报, 2019, 36 (1): 43-55 [Huang XB, Zhang TK, Liu CY, Zhao YJ, Wei HM, Zhou JQ, Yuan ZH. Genome-wide identification and expression analysis of Auxin Response Factor (ARF) gene family in Punica granatum [J]. J Fruit Sci, 2019, 36 (1): 43-55]
27 Song J, Gao Z, Huo X, Sun H, Xu Y, Shi T, Ni Z. Genome-wide identification of the Auxin Response Factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc) [J]. Acta Physiol Plant, 2015, 37 (8): 145
28 方智振, 叶新福, 周丹蓉, 潘少霖, 姜翠翠. 辐射三月李红肉迟熟突变体的ISSR分析[J]. 核农学报, 2016, 30 (2): 209-215 [Fang ZZ, Ye XF, Zhou DR, Pan SL, Jiang CC. ISSR analysis on red-flesh and late-ripening mutant of Sanyue plum (Prunus salicina Lindl.) induced by irradiation [J]. J Nuclear Agric Sci, 2016, 30 (2): 209-215]
29 Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latché A, Pech JC, Bouzayen M. Down-regulation of DR12, an Auxin Response Factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit [J]. Plant J, 2002, 32 (4): 603-613
30 Liu K, Kang B-C, Jiang H, Moore SL, Li H, Watkins CB, Setter TL, Jahn MM. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene [J]. Plant Mol Biol, 2005, 58 (4): 447-464
31 Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, Latché A, Pech JC, Fernie AR, Bouzayen M. Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling [J]. Plant cell, 2009, 21 (5): 1428-1452
32 Sagar M, Chervin C, Mila I, Hao Y, Roustan JP, Benichou M, Gibon Y, Biais B, Maury P, Latché A, Pech JC, Bouzayen M, Zouine M. SlARF4, an Auxin Response Factor involved in the control of sugar metabolism during tomato fruit development [J]. Plant Physiol, 2013, 161 (3): 1362-1374
33 Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the Auxin Response Factor gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19 [J]. Plant cell, 2005, 17 (2): 444-463
34 Wu J, Wang F, Cheng L, Kong F, Peng Z, Liu S, Yu X, Lu G. Identification, isolation and expression analysis of Auxin Response Factor (ARF) genes in Solanum lycopersicum [J]. Plant Cell Rep, 2011, 30 (11): 2059
35 李全超, 刘洋, 肖瑶宇, 李琳, 杨征帆, 陈晓静. 基于转录组的‘黄花2号’水仙ARF基因家族分析[J]. 应用与环境生物学报, 2019, 25 (3): 687-694 [Li QC, Liu Y, Xiao YY, Li L, Yang ZF, Chen XJ. Analysis of ARF gene family of Narcissus tazetta ‘Huanghua 2’ based on transcriptome [J]. Chin J Appl Environ Biol, 2019, 25 (3): 687-694]
36 Chandler JW. Auxin response factors [J]. Plant Cell Environ, 2016, 39 (5): 1014-1028
37 Sagar M, Chervin C, Roustan J-P, Bouzayen M, Zouine M. Under-expression of the Auxin Response Factor Sl-ARF4 improves post-harvest behavior of tomato fruits [J]. Plant Signal Behav, 2013, 8 (10): e25647
38 冯媛媛, 李颖楠, 侯佩, 张景荣, 汪松虎, 刘永胜. 番茄ARF4基因果实特异RNAi载体的构建及遗传转化[J]. 应用与环境生物学报, 2012, 18 (2): 206-211 [Feng YY, Li YN, Hou P, Zhang JR, Wang SH, Liu YS. Construction and genetic transformation of tomoto ARF4 RNA interference expression vector with fruit specific promoter [J]. Chin J Appl Environ Biol, 2012, 18 (2): 206-211]
39 Breitel DA, Chappell-Maor L, Meir S, Panizel I, Puig CP, Hao Y, Yifhar T, Yasuor H, Zouine M, Bouzayen M, Granell Richart A, Rogachev I, Aharoni A. Auxin Response Factor 2 intersects hormonal signals in the regulation of tomato fruit ripening [J]. PLOS Genet, 2016, 12 (3): e1005903
40 Hao Y, Hu G, Breitel D, Liu M, Mila I, Frasse P, Fu Y, Aharoni A, Bouzayen M, Zouine M. Auxin Response Factor SlARF2 is an essential component of the regulatory mechanism controlling fruit ripening in tomato [J]. PLOS Genetics, 2016, 11 (12): e1005649

相似文献/References:

[1]孟蒙,唐维,刘嘉,等.基于中华猕猴桃“红阳”转录组序列开发EST-SSR分子标记[J].应用与环境生物学报,2014,20(04):564.[doi:10.3724/SP.J.1145.2013.12034]
 MENG Meng,TANG Wei,LIU Jia,et al.Development of EST-SSR markers in Actinidia chinesis cv ‘Hongyang’ based on transcriptomic sequences[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):564.[doi:10.3724/SP.J.1145.2013.12034]
[2]孙蛟龙,方扬,靳艳玲,等.浮萍转录组数据SSR位点的生物信息学分析[J].应用与环境生物学报,2015,21(03):401.[doi:10.3724/SP.J.1145.2014.04027]
 SUN Jiaolong,FANG Yang,JIN Yanling,et al.Bioinformatic analysis on SSR information in duckweed transcriptome[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):401.[doi:10.3724/SP.J.1145.2014.04027]
[3]李强,陈诚,熊川,等.杏鲍菇转录组数据SSR位点的生物信息学分析[J].应用与环境生物学报,2017,23(03):454.[doi:2016.05014]
 LI Qiang,CHEN Cheng,XIONG Chuan,et al.Bioinformatic analysis of simple sequence repeat (SSR) loci in the Pleurotus eryngii transcriptome[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):454.[doi:2016.05014]
[4]李娜,姚民,梅兰菊,等.基于山桐子转录组序列的SSR分子标记开发[J].应用与环境生物学报,2017,23(05):952.[doi: 10.3724/SP.J.1145.2016.10028]
 LI Na,YAO Min,MEI Lan ju,et al.Development of SSR molecular markers based on transcriptome sequencing of Idesia polycarpa Maxim.[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):952.[doi: 10.3724/SP.J.1145.2016.10028]
[5]李志丹,方扬,靳艳玲,等.少根紫萍转录因子及其营养胁迫下的表达[J].应用与环境生物学报,2018,24(01):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
 LI Zhidan,FANG Yang,et al.Transcription factors and their expression in $Landoltia punctata$ under nutrient starvation[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
[6]李林霖,高信芬,李诗琦,等.胡枝子叶片转录组特征分析及其EST-SSR标记开发[J].应用与环境生物学报,2018,24(06):1338.[doi:10.19675/j.cnki.1006-687x.2018.01034]
 LI Linlin,et al..De novo assembly of leaf transcriptome of Lespedeza bicolor (Fabaceae: Papilionoideae) and characterization of expressed sequence tag-derived simple sequence repeats markers[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1338.[doi:10.19675/j.cnki.1006-687x.2018.01034]
[7]王明秀,栾威,马欣荣,等.少根紫萍淀粉合成关键基因对寡营养胁迫的响应[J].应用与环境生物学报,2019,25(01):128.[doi:10.19675/j.cnki.1006-687x.2018.04021]
 WANG Mingxiu,LUAN Wei,et al.Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):128.[doi:10.19675/j.cnki.1006-687x.2018.04021]
[8]缪晡,苟敏,陈栋,等.不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价[J].应用与环境生物学报,2019,25(05):1185.[doi:10.19675/j.cnki.1006-687x.2019.07015]
 MIAO Pu,GOU Min,CHEN Dong & TANG Yueqin,et al.Genome-wide evaluation of constitutive and inducible promotors in Saccharomyces cerevisiae utilizing different carbon sources[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1185.[doi:10.19675/j.cnki.1006-687x.2019.07015]
[9]缪晡 苟敏 陈栋 汤岳琴**.不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价*[J].应用与环境生物学报,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.07015]
 MIAO Pu,Gou Min,CHEN Dong,et al.Genome-wide evaluation of constitutive and regulated promoters in Saccharomyces cerevisiae in different carbon sources*[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1.[doi:10.19675/j.cnki.1006-687x.2019.07015]

更新日期/Last Update: 2019-12-25