|本期目录/Table of Contents|

[1]郭长禄,史宏伟,张治洲.不同防污性能的纳米涂层对海水生物膜中真核菌群的影响[J].应用与环境生物学报,2020,26(02):348-356.[doi:10.19675/j.cnki.1006-687x.2019.05014]
 GUO Changlu,SHI Hongwei,et al.Effects of nano-filled coatings with different antifouling properties on eukaryotic flora in marine biofilm[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):348-356.[doi:10.19675/j.cnki.1006-687x.2019.05014]
点击复制

不同防污性能的纳米涂层对海水生物膜中真核菌群的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年02期
页码:
348-356
栏目:
研究论文
出版日期:
2020-04-25

文章信息/Info

Title:
Effects of nano-filled coatings with different antifouling properties on eukaryotic flora in marine biofilm
作者:
郭长禄史宏伟张治洲
1哈尔滨工业大学(威海)海洋科学与技术学院 威海 264209 2山东省海洋船舶防污工程技术研究中心 威海 264209
Author(s):
GUO Changlu1 2 SHI Hongwei1 2 & ZHANG Zhizhou1 2?
1School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China 2Marine Antifouling Engineering Technology Center of Shangdong Province, Weihai 264209, China
关键词:
海洋污损生物膜纳米涂层真核群落高通量测序水母
Keywords:
marine biofouling biofilm nano-filled coating eukaryotic community high-throughput sequencing Leptothecata
DOI:
10.19675/j.cnki.1006-687x.2019.05014
摘要:
碳纳米管(Carbon nanotubes,CNTs)和聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)制备的复合防污涂层具有不同的防污性能,但其表面污损早期生物膜中真核群落结构组成与防污性能之间的关系研究还非常少. 分别制备防污性能不同的CNTs-PDMS合涂层,通过海洋挂板采集污损早期生物膜样本,提取生物膜宏基因组,通过18S rRNA V4区高通量测序分析,研究其中真核生物群落的组成、群落多样性、多样本间的差异以及与环境因子之间的关联. 结果显示,在所观察的24 d时间窗口内,两类涂层表面真核菌群的结构组成随时间发生很大的类似的变化;但是两类涂层的多样性参数本身差异并不很大,只是防污性能较好的涂层真核生物群落的多样性参数和丰富度参数变化趋势均是先增大后减小再增大;而防污性能较差的涂层真核生物群落多样性参数和丰富度参数变化趋势均是先增加后减小. 两类涂层还有一个明显的差别是,软水母目Leptothecata在防污打分较高的涂层中含量很低,甚至检测不到,但是在对照及防污打分较低的涂层中其含量要高几倍到几十倍. 可见,所有CNTs-PDMS涂层在观察时间段内表面真核群落结构发生很大改变;具备不同防污打分的CNTs-PDMS涂层表面真核菌群结构比较相似,但是它们的菌群结构动态过程具有明显的趋势差异. (图7 表4 参26)
Abstract:
Low surface energy composite antifouling coatings prepared from carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) have differential antifouling properties; however, few studies have been undertaken on the structure and function of the eukaryotic flora on the coating surfaces that have different antifouling capacities. Nano-filled coatings were prepared using both CNTs and PDMS. Early biofilm samples were collected from marine hanging plates that had good and poor antifouling scores. Biofilm metagenome DNA was extracted and analyzed by high-throughput sequencing of the 18S rRNA V4 region to study the composition of the eukaryotic community, especially the alpha and beta diversity indexes, richness indexes, abundance of operational taxonomic units, and correlation between flora composition and CNTs parameters/environmental factors. During this 24-day study, the structural composition of the eukaryotic flora on the coating surfaces changed greatly; however, the diversity and richness index values of the two types of coatings were similar. The changing trend of the diversity and richness indexes was increase-decrease- increase again for coatings with high antifouling scores, and increase-decrease for coatings with low antifouling scores. The content of Leptothecata was several-fold to 10-fold lower in the coatings with better antifouling performance than in those with poor antifouling performance. The compositional structure of eukaryotic flora on the surface of all CNTs-PDMS coatings changed significantly during the field test period. The two types of antifouling coatings with differential antifouling performance had similar eukaryotic flora structures but the changing trends of the flora were different. These preliminary observations should be investigated further in future studies.

参考文献/References:

1 Dang HY, Lovell CR. Microbial surface colonization and biofilm development in marine environments [J]. Microbiol Mol Biol Rev, 2016, 80 (1): 91-138
2 黄宗国, 李传燕, 张良兴, 陈炎源, 李福荣. 渤海湾附着生物生态[J]. 海洋学报, 1980, 2 (3): 111-122 [Huang ZG, Li CY, Zhang XL, Chen YY, Li FR. Bohai Bay attached to biological ecology [J]. Acta Oceanol Sin, 1980, 2 (3): 111-122]
3 Antizar-Ladislao B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment, a review [J]. Environ Int, 2008, 34 (2): 292-308
4 张彦彦, 赵文杰, 周成旭, 吴英豪, 曹辉亮, 崔平. 纳米颗粒增强TiO2涂层的制备及其防污性能[J]. 中国表面工程, 2017, 30 (6): 1-10 [Zhang YY, Zhao WJ, Zhou CX, Wu YH, Cao HL, Cui P. Preparation of nanoparticle reinforced TiO2 coating and its antifouling performance [J]. Chin Surf Eng, 2017, 30 (6): 1-10]
5 潘珊珊, 孙秀花, 王科, 桂泰江, 高昌录. 环境友好海洋防污涂料的新进展[J]. 合成材料老化与应用, 2018, 47 (3): 87-93+104 [Pan SS, Sun XH, Wang K, Gui TJ, Gao CL. Progress in environmentally friendly marine antifouling coatings [J]. Synthetic Mater Aging Appl, 2018, 47 (3): 87-93+104]
6 Chen L, Qian PY. Review on molecular mechanisms of antifouling compounds: an update since 2012 [J]. Mar Drugs, 2017, 15 (9): 264
7 Akuzov D, Vladkova T, Zamfirova G, Gaydarov V, Nascimeto MV, Szeglat N, Grunwald I. Polydimethyl siloxane coatings with superior antibiofouling efficiency in laboratory and marine conditions [J]. Prog Org Coat, 2017, 103: 126-134
8 Al-Naamani L, Dobretsov S, Dutta J, Burgess JG. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling [J]. Chemosphere, 2017, 168: 408-417
9 Galhenage TP, Webster DC, Moreira AMS, Burgett RJ, Stafslien SJ, Vanderwal L, Finlay JA, Franco SC, Clare AS. Poly (ethylene) glycol-modified, amphiphilic, siloxane-polyurethane coatings and their performance as fouling-release surfaces [J]. J Coat Technol Res, 2017, 14 (2): 307-322
10 Callow JA, Callow ME. Trends in the development of environmentally friendly fouling-resistant marine coatings [J]. Nat Commun, 2011, 2: 244
11 Sathe P, Laxman K, Myint MTZ, Dobretsov S, Richter J, Dutta J. Bioinspired nanocoatings for biofouling prevention by photocatalytic redox reactions [J]. Sci Rep, 2017, 7 (1): 3624
12 孙源. CNTs/PDMS复合涂层对污损早期微生物群落影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2016 [Sun Y. The study on the effect of the CNTS/PDMS composites on the pioneer fouling microbial communities [D]. Harbin: Harbin Institute of Technology, 2016
13 Sun Y, Zhang ZZ. New anti-biofouling carbon nanotubes-filled polydimethylsiloxane composites against colonization by pioneer eukaryotic microbes [J]. Int Biodeter Biodegr, 2016, 110: 147-154
14 乔玲, 于杰, 李迎, 甄毓, 米铁柱, 张玲玲, 包振民. 基于高通量测序分析的荣成扇贝养殖区微型浮游生物群落结构研究[J]. 中国海洋大学学报: 自然科学版, 2018, 48 (2): 64-72 [Qiao L, Yu J, Li Y, Zhen Y, Mi TZ, Zhang LL, Bao ZM. Characteristics of eukaryotic nanoplankton community in the scallop culture area of rongcheng by illumina sequencing [J]. J Ocean Univ Chin, 2018, 48 (2): 64-72]
15 付新华, 刘国宁, 何健龙, 马元庆, 宋秀凯, 孟丽, 贾青妹. 山东省渤海海洋保护区典型海域表层海水微生物群落多样性分析[J]. 海洋科学, 2017, 41 (1): 39-47 [Fu XH, Liu GN, He JL, Ma YQ, Song XK, Meng L, Jia QM. Analysis of microbial community diversity in the Bohai Sea marine protected areas of the Shandong Province [J]. Mar Sci, 2017, 41 (1): 39-47]
16 Symposium: biological aspects of water pollution [J]. Nature, 1948, 161: 874
17 Mine T, Kawamura Y, Ueda H. Abirity of Amphiascus sp.(Copepoda, Harpacticoida) to remove fouling diatoms on conchocelis-bearing oyster shells in nori culture [J]. Nippon Suisan Gakkaishi, 2015, 71 (6): 923-927
18 Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ, Chen GJ, Du ZJ. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing [J]. Microbiome, 2018, 6 (1): 230
19 Sun Y, Zhang ZZ. Carboxyl-modified multi-walled carbon nanotubes-filled PDMS nanocomposites for anti-biofouling applications [J]. J Adhes Sci Technol, 2016, 31 (1): 41-54
20 Sun Y, Lang Y, Sun Q, Liang S, Zhang ZZ. Effect of anti-biofouling potential of multi-walled carbon nanotubes-filled polydimethylsiloxane composites on pioneer microbial colonization [J]. Colloid Surface B, 2016, 145: 30-36
21 Briand JF, Barani A, Garnier C, Réhel K, Urvois F, Lepoupon C, Bouchez A, Debroas D, Bressy C. Spatio-temporal variations of marine biofilm communities colonizing artificial substrata including antifouling coatings in contrasted French coastal environments [J]. Microbiol Ecol, 2017, 74 (3): 585-598
22 Kuliasha CA, Finlay JA, Franco SC, Clare AS, Stafslien SJ, Brennan AB. Marine anti-biofouling efficacy of amphiphilic poly (coacrylate) grafted PDMSe: effect of graft molecular weight [J]. Biofouling, 2017, 33 (3): 252-267
23 Yang JL, Li YF, Guo XP, Liang X, Xu YF, Ding DW, Bao WY, Dobretsov S. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement [J]. Biofouling, 2016, 32 (7): 763-777
24 Stafslien SJ, Bahr JA, Feser JM, Weisz JC, Chisholm BJ, Ready TE, Boudjouk P. Combinatorial materials research applied to the development of new surface coatings I: a multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces [J]. J Comb Chem, 2006, 8 (2): 156-162
25 Arukalam IO, Oguzie EE, Li Y. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel [J]. J Colloid Interface Sci, 2016, 484: 220-228
26 Selim MS, Shenashen MA, El-Safty SA, Higazy SA, Selim MM, Isago H, Elmarakbi A. Recent progress in marine foul-release polymeric nanocomposite coatings [J]. Prog Mater Sci, 2017, 87: 1-3

相似文献/References:

[1]方治华,黄勇,姜德成,等.新型多孔高分子载体厌氧流化床启动实验研究[J].应用与环境生物学报,1996,2(02):147.
 Fang Zhihua,Huang Yong,Jiang Decheng,et al.EFFECTS OF NEW POROUS POLYMER MICROCARRIERS ON START UP PERFORMANCE OF ANAEROBIC FLUIDIZED BED[J].Chinese Journal of Applied & Environmental Biology,1996,2(02):147.
[2]何洁,刘长发,吴钰.三种载体上生物膜硝化作用动力学初步研究[J].应用与环境生物学报,2003,9(05):546.
 ZHONG Rong,et al..Spatialtemporal expression of fertility development in a novel Indica-Japonnica rice hybrid and sterile mutant—91FS[J].Chinese Journal of Applied & Environmental Biology,2003,9(02):546.
[3]李俊英,王荣昌,夏四清.群体感应现象及其在生物膜法水处理中的应用[J].应用与环境生物学报,2008,14(01):138.
 LI Junying,et al..Quorum Sensing System and its Application in Water Treatment with Biofilm[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):138.
[4]刘静,张道勇,潘响亮,等.藻菌生物膜胞外聚合物(EPS)与Al3+的配位作用机理[J].应用与环境生物学报,2009,15(03):347.[doi:10.3724/SP.J.1145.2009.00347]
 LIU Jing,ZHANG Daoyong,PAN Xiangliang,et al.Characterization of the Complexation Between Al3+ and Extracellular Polymeric Substances Prepared from Alga-bacteria Biofilm[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):347.[doi:10.3724/SP.J.1145.2009.00347]
[5]占国强,王晓梅,何晓红,等.高温自养硝化反硝化工艺初步研究[J].应用与环境生物学报,2010,16(01):122.[doi:10.3724/SP.J.1145.2010.00122]
 Autotrophic Nitrification-Denitrification Process at High Temperature.Preliminary Study of Autotrophic Nitrification-Denitrification Process at High Temperature[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):122.[doi:10.3724/SP.J.1145.2010.00122]
[6]刘敏,邵军,周奔,等.微生物产电呼吸最新研究进展[J].应用与环境生物学报,2010,16(03):445.[doi:10.3724/SP.J.1145.2010.00445]
 LIU Min,SHAO Jun,ZHOU Ben,et al.Progress in Research of Microbial Electricigenic Respiration[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):445.[doi:10.3724/SP.J.1145.2010.00445]
[7]曹明福,朱恂,王永忠,等.膜生物反应器处理甲苯废气的挂膜实验[J].应用与环境生物学报,2011,17(05):731.[doi:10.3724/SP.J.1145.2011.00731]
 CAO Mingfu,ZHU Xun,WANG Yongzhong,et al.Biofilm Formation of Membrane Bioreactors (MBR) for Toluene Removal[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):731.[doi:10.3724/SP.J.1145.2011.00731]
[8]栾鑫,段继周,陈永伟,等.两种船用防污涂层实海挂片表面细菌群落多样性分析[J].应用与环境生物学报,2013,19(03):471.[doi:10.3724/SP.J.1145.2013.00471]
 LUAN Xin,DUAN Jizhou,CHEN Yongwei,et al.Diversity of Bacterial Community on the Surface of Marine Paint in Temperate Coastal Marine Waters[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):471.[doi:10.3724/SP.J.1145.2013.00471]
[9]宋楠,何晓红,李大平,等.硫酸粘菌素生产废水的硝化反硝化生物脱氮[J].应用与环境生物学报,2013,19(06):1035.[doi:10.3724/SP.J.1145.2013.01035]
 SONG Nan,HE Xiaohong,LI Daping,et al.Removing Nitrogen from Colistin Sulfate Production Wastewater via Nitrification-Denitrification Process[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):1035.[doi:10.3724/SP.J.1145.2013.01035]
[10]黄昕琦,蔡中华,林光辉,等.群体感应信号对“藻-菌”关系的调节作用[J].应用与环境生物学报,2016,22(22卷04):708.[doi:10.3724/SP.J.1145.2016.02019]
 HUANG Xinqi,CAI Zhonghua,LIN Guanghui,et al.Quorum sensing modulating algae-bacteria interactions*[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):708.[doi:10.3724/SP.J.1145.2016.02019]

更新日期/Last Update: 2020-04-25