|本期目录/Table of Contents|

[1]燕红梅,张欣钰,檀文君,等.5种植物根际真菌群落结构与多样性[J].应用与环境生物学报,2020,26(02):364-369.[doi:10.19675/j.cnki.1006-687x.2019.05010]
 YAN Hongmei,ZHANG Xinyu,et al.Biodiversity and composition of rhizosphere fungal communities associated with five plant species[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):364-369.[doi:10.19675/j.cnki.1006-687x.2019.05010]
点击复制

5种植物根际真菌群落结构与多样性
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年02期
页码:
364-369
栏目:
研究论文
出版日期:
2020-04-25

文章信息/Info

Title:
Biodiversity and composition of rhizosphere fungal communities associated with five plant species
作者:
燕红梅张欣钰檀文君陈卫民
1陕西省农业与环境微生物重点实验室 杨凌 712100 2西北农林科技大学生命科学学院 杨凌 712100
Author(s):
YAN Hongmei1 2 ZHANG Xinyu1 TAN Wenjun1 & CHEN Weimin1 2?
1 Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling 712100, China 2 College of Life Sciences, Northwest A&F University, Yangling 712100, China
关键词:
根际真菌群落多样性生态功能
Keywords:
rhizosphere fungal community diversity ecological function
DOI:
10.19675/j.cnki.1006-687x.2019.05010
摘要:
根际真菌在植物生长和健康方面具有非常重要的作用,然而由于分离和培养技术的限制,对根际真菌群落、多样性及功能仍缺乏认识. 为明确不同植物根际真菌群落的结构与差异,揭示其潜在的生态功能,采用Illumina MiSeq技术对马蔺、葡萄、大豆、玉米等5种植物根际真菌ITS rRNA基因的ITS2区进行高通量测序,并利用FUNGuild对其功能进行预测分析. 结果显示,5种植物根际中80%以上的真菌序列划分到17-45个OTUs中,优势菌门为子囊菌门,优势菌纲为座囊菌纲和粪壳菌纲等;这5种植物根际真菌群落各自聚群,其香农指数(Shannon)和丰富度(Chao1)从大到小依次为木瓜、马蔺、葡萄、大豆、玉米;在获得的1 290个OTUs中,49.76%的OTUs归属于8个功能类群,其中腐生菌约占总OTUs数的25.89%,是主要功能类群,其次是病原菌/腐生/共生过渡型、植物病原体等,葡萄、木瓜和马蔺根际中腐生菌显著高于大豆和玉米. 本研究表明木瓜、马蔺和常见植物根际真菌的群落结构和多样性不同,一年生作物的根际真菌多样性小于多年生植物,进而也表明根际真菌群落及其生态功能受到植物的生活周期或类型的影响. (图4 表1 参30)
Abstract:
Rhizosphere fungi play an important role in promoting plant growth and protecting plant health. However, due to the limitations of culture methods, the influence of different plant species on the biodiversity and composition of rhizosphere fungal communities remains unknown. To reveal the functions of the rhizosphere fungal communities of five plant species (i.e., pawpaw, iris, grape, soybean, and maize), we analyzed their structure and composition using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region and estimated their functions with FUNGuild. Our results showed that the most abundant fungal sequences were assigned to Ascomycetes at the level of phylum and to either Dothideomycetes or Sordariomycetes at the level of class. Eighty percent of the fungal sequences belonged to 17 of the 45 most dominant OTUs for each plant species. The Shannon diversity and Chao1 richness indices showed the order was pawpaw > iris > grape > soybean > maize. Principal component analysis of the relative abundance of fungal OTUs showed that samples from the same plant species typically clustered together, and fungal communities were similar among soybean, iris, and grape plants. Additionally, functional assignments were made with FUNGuild, and the results showed that 49.76% of all OTUs (1 290 OTUs) belonged to eight trophic modes, of which saprotroph was the main group accounting for 25.89% of all OTUs, followed by pathogens/saprophytes/symbionts combined and plant pathogens. This study revealed that crop rhizosphere fungal diversity was lower than that of perennial plants. Rhizosphere fungal communities and their potential ecological functions may be affected by plant species or life cycles.

参考文献/References:

1. Hawksworth DL, Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species [M]//Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N. The Fungal Kingdom. Washington DC: ASM Press, 2017: 79-95
2. Voriskova J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes [J]. ISME J, 2013, 7: 477-486
3. Yang T, Adams JM, Shi Y, He JS, Jing X, Chen L, Chu H. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity [J]. New Phytol, 2017, 215: 756-765
4. Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities [J]. Soil Biol Biochem, 2019, 129: 99-109
5. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. Roots and associated fungi drive long-term carbon sequestration in boreal forest [J]. Science, 2013, 39 (6127): 1615-1618
6. Van der Heijden MGA, Bruin S, Luckerhoff L, van Logtestijn RSP, Schlaeppi K. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment [J]. ISME J, 2016, 10: 389
7. Nilsson R. Henrik, Mycobiome diversity: high-throughput sequencing and identification of fungi [J]. Nat Rev Microbiol, 2019, 17: 95-109
8. 陆雅海, 张福锁. 根际微生物研究进展[J]. 土壤, 2006, 38 (2): 113-121 [Lu YH, Zhang FS. The advances in rhizosphere microbiology [J]. Soil, 2006, 38 (2): 113-121]
9. Ladygina N, Hedlund K. Plant species influence microbial diversity and carbon allocation in the rhizosphere [J]. Soil Biol Biochem, 2010, 42 (2): 162-168
10. Haney CH, Samuel BS, Bush J, Ausubel FM. Associations with rhizosphere bacteria can confer an adaptive advantage to plants [J]. Nat Plants, 2015, 1: 15051
11. Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities [J]. Annu Rev Microbiol, 2012, 66: 265-283
12. Pineda A, Zheng SJ, van Loon JJ, Pieterse CM, Dicke M. Helping plants to deal with insects: the role of beneficial soil-borne microbes [J]. Trends Plant Sci, 2010, 15 (9): 507-514
13. Han LL, Wang JT, Yang SH, Chen WF, Zhang LM, He JZ. Temporal dynamics of fungal communities in soybean rhizosphere [J]. J Soil Sediment, 2017, 17: 491-498
14. Zhang T, Wang Z, Lü X, Li Y, Zhuang L. High-throughput sequencing reveals the diversity and community structure of rhizosphere fungi of Ferula sinkiangensis at different soil depths [J]. Sci Rep, 2019, 9: 6558
15. 张玥, 胡雲飞, 王树茂, 柯子星, 高水练, 林金科. 茶园年限对根际土壤真菌群落结构及多样性的影响[J]. 应用与环境生物学报, 2018, 24 (5): 972-977 [Zhang Y, Hu YF, Wang SM, Ko T, Gao SL,Lin JK. The structure and diversity of the fungal community in rhizosphere soil from tea gardens of different ages [J]. Chin J Appl Environ Biol, 2018, 24 (5): 972-977]
16. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W. Fungal barcoding consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi [J]. PNAS, 2012, 109 (16): 6241-6246
17. Nguyen NH, Song Z, Bates ST, Branco S, TedersooL, Menke J, Schilling JS, Kennedy PG. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J]. Fungal Ecol, 2016, 20: 241-248
18. 汪其同, 高明宇, 刘梦玲, 王华田, 董玉峰, 王延平. 基于高通量测序的杨树人工林根际土壤真菌群落结构[J]. 应用生态学报, 2017, 28 (4): 1177-1183 [Wang QT, Gao MY, Liu ML, Wang HT, Dong YF, Wang YP. Illumina Miseq sequencing-based fungal community of rhizosphere soils along root orders of poplar plantation [J]. Chin J Appl Ecol, 2017, 28 (4) : 1177-1183]
19. Loganathachetti DS, Poosakkannu A, Muthuraman S. Fungal community assemblage of different soil compartments in mangrove ecosystem [J]. Sci Rep, 2017, 7: 8560
20. Chen L, Xiang WH, Wu HL, Ouyang S, Lei PF, Hu YJ, Ge TD, Ye J, Kuzyakov Y. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests [J]. Appl Microbiol Biotechnol, 2019: 10.1007/s00253-019-09867-z
21. Uroz S, Buée M, Deveau A, Mieszkin S, Martin F. Ecology of the forest microbiome: highlights of temperate and boreal ecosystems [J]. Soil Biol Biochem, 2016, 103: 471-488
22. Yan D, Mills JG, Gellie NJC, Bissett A, Lowe AJ, Breed MF. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration [J]. Biol Conserv, 2018, 217: 113-120
23. Wu LK, Wang JY, Huang WM, Wu HM, Chen J, Yang YQ, Zhang ZY, Lin WX. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture [J]. Sci Rep, 2015, 5: 158-171
24. Hannula SE, Morri?n E, de Hollander M, van der Putten WH, van Veen JA, de Boer W. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture [J]. ISME J, 2017, 11: 2294
25. 蔡祖聪, 黄新琦. 土壤学不应忽视对作物土传病原微生物的研究[J]. 土壤学报, 2016, 53 (2): 305-310 [Cai ZC, Huang XQ. Soil-borne pathogens should not be ignored by soil science [J]. Acta Pedol Sin, 2016, 53 (2): 305-310]
26. Zhao S, Qiu S, Xu X, Ciampitti IA, Zhang S,He P. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils [J]. Appl Soil Ecol, 2019, 138: 123-133
27. Camenzind T, Hempel S, Homeier J, Horn S, Velescu A., Wilcke W, Rillig MC. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest [J]. Global Change Biol, 2014, 20: 3646-3659
28. Xu J, Zhang YZ, Zhang PF, Trivedi P, Riera N, Wang YY, Liu X, Fan GY, Tang JL, Coletta-Filho HD, Cubero J, Deng XL, Ancona V, Lu ZJ, Zhong B, Roper MC, Capote N, Catara V, Pietersen G, Vernière C, Al-Sadi AM, Li L, Yang F, Xu X, Wang J, Yang HM, Jin T, Wang N. The structure and function of the global citrus rhizosphere microbiome [J]. Nat Commun, 2018, 9 (1): 4894
29. Hossain MM, Sultana F, Islam S. Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance [M]//Singh D, Singh H, Prabha R. Plant-Microbe Interactions in Agro-Ecological Perspectives. Singapore: Springer, 2017: 135-191
30. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere [J]. Nat Rev Microbiol, 2013, 11: 789
31.

相似文献/References:

[1]盛江梅,吴小芹,侯亮亮,等.一株黑松-美味牛肝菌菌根辅助细菌的筛选及鉴定[J].应用与环境生物学报,2010,16(05):701.[doi:10.3724/SP.J.1145.2010.00701]
 SHENG Jiangmei,WU Xiaoqin,HOU Liangliang,et al.Isolation and Identification of a MHB Strain from the Rhizosphere Soil of Pinus thunbergi Inoculated with Boletus edulis[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):701.[doi:10.3724/SP.J.1145.2010.00701]
[2]刘方春,邢尚军,马海林,等.PGPR生物肥对甜樱桃(Cerasus pseudocerasus)根际土壤生物学特征的影响[J].应用与环境生物学报,2012,18(05):722.[doi:10.3724/SP.J.1145.2012.00722]
 LIU Fangchun,XING Shangjun,MA Hailin,et al.Effect of PGPR Fertilizer on Biological Characteristics in Cerasus pseudocerasus Rhizosphere[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):722.[doi:10.3724/SP.J.1145.2012.00722]
[3]马海林,邢尚军,刘方春,等.冬枣(Ziziphus jujube Mill.)根际3株促生细菌的筛选与鉴定[J].应用与环境生物学报,2013,19(04):650.[doi:10.3724/SP.J.1145.2013.00650]
 MA Hailin,XING Shangjun,LIU Fangchun,et al.Screening and Identification of Three Plant Growth-promoting Rhizobacteria from Winter Jujube (Ziziphus jujube Mill.) Rhizosphere[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):650.[doi:10.3724/SP.J.1145.2013.00650]
[4]马海林,刘方春,马丙尧,等.保水剂对侧柏容器苗根际土壤微生物种群结构及干旱适应能力的影响[J].应用与环境生物学报,2016,22(01):43.[doi:10.3724/SP.J.1145.2015.04009]
 MA Hailin**,LIU Fangchun,MA Bingyao,et al.Effects of super-absorbent polymer on the microbial community structure in rhizosphere soil and drought resistance of platycladus orientalis container seedlings[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):43.[doi:10.3724/SP.J.1145.2015.04009]
[5]李善家,王军强,施志国,等.不同基肥处理对玉米土壤酶活性和球囊霉素相关土壤蛋白的影响[J].应用与环境生物学报,2017,23(2):357.[doi:10.3724/SP.J.1145.2016.04045]
 LI Shanjia,WANG Junqiang,et al.Effect of different base fertilizer treatments on maize soil enzyme activity and glomalin-related protein[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):357.[doi:10.3724/SP.J.1145.2016.04045]
[6]杨永,张学军,李寐华,等.微生物肥料对设施长期连作哈密瓜根际土壤真菌群落结构的影响[J].应用与环境生物学报,2018,24(01):68.[doi:10.19675/j.cnki.1006-687x.2017.03014]
 YANG Yong,ZHANG Xuejun,LI Meihua,et al.Effects of microbiological fertilizer on rhizosphere soil fungus communities under long-term continuous cropping of protected Hami melon[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):68.[doi:10.19675/j.cnki.1006-687x.2017.03014]
[7]张玥,胡雲飞,王树茂,等.茶园年限对根际土壤真菌群落结构及多样性的影响[J].应用与环境生物学报,2018,24(05):972.[doi:10.19675/j.cnki.1006-687x.2018.04011]
 ZHANG Yue,HU Yunfei,WANG Shumao,et al.The structure and diversity of the fungal community in rhizosphere soil from tea gardens of different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):972.[doi:10.19675/j.cnki.1006-687x.2018.04011]
[8]肖辰,陆震鸣,张晓娟,等.泸型酒中层酒醅真菌群落的发酵演替规律[J].应用与环境生物学报,2018,24(05):1081.[doi:10.19675/j.cnki.1006-687x.2017.12057]
 XIAO Chen,LU Zhenming,ZHANG Xiaojuan,et al.Succession of the fungal community on fermented grains of Luzhou-flavor baijiu through fermentation[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):1081.[doi:10.19675/j.cnki.1006-687x.2017.12057]
[9]李静,张金羽,张琪,等.玉米根际无机磷溶解菌的筛选与促生特性[J].应用与环境生物学报,2019,25(02):378.[doi:10.19675/j.cnki.1006-687x.2018.06005]
 LI Jing,ZHANG Jinyu,ZHANG Qi,et al.Screening and analysis of plant growth-promoting properties in inorganic phosphate-solubilizing bacteria from maize rhizosphere[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):378.[doi:10.19675/j.cnki.1006-687x.2018.06005]
[10]樊利华,周星梅,吴淑兰,等.干旱胁迫对植物根际环境影响的研究进展[J].应用与环境生物学报,2019,25(05):1244.[doi:10.19675/j.cnki.1006-687x.2018.12037]
 FAN Lihua,ZHOU Xingmei,WU Shulan,et al.Research advances on the effects of drought stress in plant rhizosphere environments[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):1244.[doi:10.19675/j.cnki.1006-687x.2018.12037]

更新日期/Last Update: 2020-04-25