|本期目录/Table of Contents|

[1]王嘉钰,董娟,唐卓.基于环介导等温扩增法可视化检测玉米转基因成分[J].应用与环境生物学报,2019,25(06):1497-1502.[doi:10.19675/j.cnki.1006-687x.2019.0402]
 WANG Jiayu,DONG Juan** & TANG Zhuo**.Colorimetric detection of genetically modified organisms (GMOs) based on loop-mediated isothermal amplification (LAMP)[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1497-1502.[doi:10.19675/j.cnki.1006-687x.2019.0402]
点击复制

基于环介导等温扩增法可视化检测玉米转基因成分
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1497-1502
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Colorimetric detection of genetically modified organisms (GMOs) based on loop-mediated isothermal amplification (LAMP)
作者:
王嘉钰董娟唐卓
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
WANG Jiayu1 2 DONG Juan1** & TANG Zhuo1**
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
环介导等温扩增转基因基因特异性可视化检测现场检测
Keywords:
loop-mediated isothermal amplification (LAMP) genetically modified (GM) gene-specific visual detection on-site detection
分类号:
Q71
DOI:
10.19675/j.cnki.1006-687x.2019.0402
摘要:
快速准确的转基因检测技术是严格监管转基因作物及其产品的重要支撑;不同转基因作物由于导入不同外源目的基因从而表现出不同性状,因此外源目的基因序列可作为基于核酸检测技术进行转基因筛选的标志物. 基于环介导等温扩增(Loop-mediated isothermal amplification,LAMP)技术,以中性红染料作为比色试剂,建立玉米内源基因和玉米转基因成分的基因特异性的可视化快速检测方法. 针对玉米内源基因IVR基因,抗虫外源bar、pat基因,和Bt176中的抗除草剂外源cry1Ab基因分别设计了LAMP引物. 结果表明,在Real-time LAMP体系下,能够实现对玉米内源IVR基因、转基因玉米品系Bt176中的bar基因和转基因玉米品系TC1507和59122中的pat基因的检测. 对转基因玉米品系Bt176中的cry1Ab基因设计的引物能特异性扩增Bt176,而对Bt11和MON810两种转基因玉米品系无效. 通过优化Tris-HCl和中性红浓度,在5 mmol/L Tris-HCl和100 μmol/L中性红浓度条件下建立了可视化检测体系,反应1 h即可分别实现对玉米内源基因IVR基因,抗虫外源bar、pat基因,和抗除草剂外源cry1Ab基因的检测. 中性红可视化检测结果与Real-time LAMP荧光扩增曲线结果一致,体现了该可视化检测方法具有较高的准确性. 本研究建立了一种对玉米转基因相关成分的可视化检测体系,该方法既快速又简便且尤其适用于现场检测. (图6 表1 参17)
Abstract:
Owing to the rapid development and application of the genetic modification technology, strict supervision of genetically modified (GM) crops and their products is imperative. To achieve this goal, it is important to develop a rapid and accurate GMO testing technology to serve as a supporting requirement. GM crops often contain different exogenous genes for various transgenic resistances and they can be used as markers for screening and identifying the transgenic components based on the nucleic acid detection technology. Here, we employed the loop-mediated isothermal amplification (LAMP) technology coupled with neutral red, an indicator dye, to establish a colorimetric detection method for maize endogenous gene and a commonly used exogenous gene. Specific primers for the endogenous gene of maize, IVR, and the exogenous genes, bar, pat, and cry1Ab were designed based on LAMP. Based on our results, the specific detection of the IVR gene, the bar gene in GM maize Bt176, and the pat gene in GM maize strains, TC1507 and 59122, could be accomplished according to the real-time LAMP fluorescence reporting system. The designed cry1Ab gene LAMP primers could specifically amplify GM maize Bt176, but not the GM maize strains, Bt11 and MON810. Nevertheless, a visual detection method was developed using 5 mmol/L Tris-HCl and 100 μmol/L neutral red dye and it could be used to detect the IVR gene and the exogenous genes, bar, pat, and cry1Ab, within 1 h. Based on our findings, the visual results were consistent with those of real-time fluorescence LAMP, thereby indicating the accuracy and reliability of our visual detection method. In conclusion, the established visual LAMP method can be employed for the detection of GM maize. This method is rapid and simple, and has great potential for use as an on-site detection tool.

参考文献/References:

1. 李哲. 转基因技术在我国生物制药领域的应用和发展[J]. 中国医药技术经济与管理,2008, 6 (2): 49-54 [Li Z. The applification and development of transgenic techniques in biomedical industry in China [J]. Chin J Pharm Technol Econom Manage, 2008, 6 (2): 49-54]
2. 陈洁君, 张维, 宛煜嵩, 金芜军, 王友华, 薛爱红, 孙国庆. 全球转基因作物发展现状及趋势[J]. 农业生物技术学报,2011, 19 (2): 369-374 [Chen JJ, ZhangW, Wan YS, Jin WJ, Wang YH, Xue AH, Sun GQ. Situation and tendency of the global geneticallymodified crops in development [J]. Chin J Agric Biotechnol, 2011, 19 (2): 369-374]
3. 卢宝荣. 转基因逃逸及其环境生物安全评价研究进展——抗虫水稻案例分析[J]. 生物安全学报, 2014, 23 (4): 217-223 [Lu BR. Assessing transgene escape and its biosafety impacts: a case study in insect-resistant transgenic rice [J]. J Biosafe, 2014, 23 (4): 217-223]
4. Deisingh AK, Badrie N. Detection approaches for genetically modified organisms in foods [J]. Food Res Int, 2005, 38 (6): 639-649
5. Babekova R, Funk T, Pecoraro S, Engel KH, Busch U. Development of an eventspecific Real-time PCR detection method for the transgenic Bt rice line KMD1 [J]. Eur Food Res Technol, 2009, 228 (5): 707-716
6. Gilliland G, Perrin S, Blanchard K, Bunn HF. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction [J]. PNAS, 1990, 87 (7): 2725-2729
7. 黄昆仑, 罗云波. 用巢式和半巢式PCR检测转基因大豆Roundup Ready及其深加工食品[J]. 农业生物技术学报, 2003, 11 (5): 461-466 [ Huang KL, Luo YB. Detecting genetically modified soybean Roundup Ready ingredient in food staffs by nested PCR and seim-nested PCR [J]. Chin J Agric Biotechnol, 2003, 11 (5): 461-466]
8. Notomi T, Okayama H, Masubachi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA [J]. NAR, 2000, 28: e63
9. 张吉红, 王佳莹, 崔俊霞, 陈先锋. 转基因油菜Ms8品系的LAMP检测[J]. 食品安全质量检测学报, 2018, 21 (9): 5592-5595 [Zhang JH, Wang JY, Cui JX, Chen X. Detection of transgenic rapeseed line Ms8 by loop-mediated isothermal amplification [J]. J Food Safe Qual, 2018, 21 (9): 5592-5595]
10. 姚立珠, 董研,张益文,杨敏生,王进茂. 环介导等温扩增技术在转基因杨树检测中的应用[J]. 分子植物育种, 2017, 15 (11),4773-4780 [Yao LZ, DongY, Zhang YW, Yang MS, Wang JM. Application of Loop-mediated isothermal amplification for the detection of transgenic poplar [J]. Mol Plant Breed, 2017, 15 (11): 4773-4780]
11. 马丹, 张沫琦, 魏海燕, 魏咏新, 徐蕾蕊, 曾静. 环介导等温扩增法检测转基因玉米MON88017品系[J]. 检验检疫学刊,2017, 27 (2): 1-5 [Ma D, Zhang MQ, Wei HY, Wei HX, Xu LR, Zeng J. A specific Loop-mediated isothermal amplification method for the detection of transgenic maize event MON88017 [J]. J Inspectquarant, 2017, 27 (2): 1-5]
12. Thompson CJ, Mowa NR, Tizard R, Crameri R, Davies JE, Lauwcreys M, Botterman J. Characterization of the herbicideresistance gene bar from Streptomyees hygroseopicus [J]. EMBO J, 1987, 6: 2519–2523
13. Geiser M., Scweitzer S, Grimm C. The hypervariable region in the genes encoding entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kurhd1 gene of sub sp. kustaki HD1 [J]. Gene,1986, 48: 109-118
14. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis [J]. Biol Technol, 1993, 11: 194-200
15. Koziel M, Carozzi NB, Desai N. Optimizing expression of transgenes with an emphasis on posttranscriptional events [J]. Plant Mol Biol, 1996, 32: 393-405
16. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins [J]. Microbiol Mol Biol Rev, 1998, 62 (3): 775-806
17. Tanner NA, Zhang Y, Evans TC. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes [J]. Biol Techniques, 2015, 58: 59-68
18.

相似文献/References:

[1]赵高梅,龙海,邓光兵,等.青稞B-hordein基因表达载体构建及对小麦的遗传转化[J].应用与环境生物学报,2011,17(03):364.[doi:10.3724/SP.J.1145.2011.00364]
 ZHAO Gaomei,LONG Hai,DENG Guangbing,et al.Vector Construction and Genetic Transformation of B-hordein Gene from Hulless Barley to Wheat[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):364.[doi:10.3724/SP.J.1145.2011.00364]
[2]丁盛,陈刚毅,李美,等.基于LAMP的病原菌一步等温可视化检测[J].应用与环境生物学报,2019,25(05):1215.[doi:10.19675/j.cnki.1006-687x.2019.01041]
 DING Sheng,CHEN Gangyi,et al.One-step isothermal visual detection of pathogens based on LAMP[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1215.[doi:10.19675/j.cnki.1006-687x.2019.01041]

更新日期/Last Update: 2019-12-25