|本期目录/Table of Contents|

[1]张晓龙,周继华,来利明,等.黑河下游绿洲-过渡带-戈壁荒漠群落优势种叶片性状和生态化学计量特征[J].应用与环境生物学报,2019,25(06):1270-1276.[doi:10.19675/j.cnki.1006-687x.2019.04013]
 ZHANG Xiaolong,ZHOU Jihua,et al.Leaf traits and ecological stoichiometry of dominant desert species across Gobi Desert–oasis ecotone in the lower reaches of Heihe River, China[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1270-1276.[doi:10.19675/j.cnki.1006-687x.2019.04013]
点击复制

黑河下游绿洲-过渡带-戈壁荒漠群落优势种叶片性状和生态化学计量特征
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1270-1276
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Leaf traits and ecological stoichiometry of dominant desert species across Gobi Desert–oasis ecotone in the lower reaches of Heihe River, China
作者:
张晓龙周继华来利明姜联合郑元润史利江
1山西财经大学资源环境学院,地表过程与生态环境研究所 太原 0300062中国科学院植物研究所 北京 100093
Author(s):
ZHANG Xiaolong1 2 ZHOU Jihua2 LAI Liming2 JIANG Lianhe2 ZHENG Yuanrun2** & SHI Lijiang1
1 Institute of Surface Processes and Ecological Environment, School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China2 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
关键词:
生境叶片性状生态化学计量特征适应策略黑河下游
Keywords:
habitat leaf trait ecological stoichiometry adaptation strategy lower reaches of Heihe River
分类号:
Q948.1
DOI:
10.19675/j.cnki.1006-687x.2019.04013
摘要:
植物性状是植物与环境共同作用的结果,研究不同生境条件下植物叶片性状和生态化学计量特征,有助于揭示植物对环境变化的响应及生态适应策略. 以黑河下游河岸绿洲、绿洲—戈壁过渡带和戈壁荒漠群落优势种为研究对象,分析荒漠优势种在生长旺季叶片干物质含量、比叶面积以及碳(C)、氮(N)和磷(P)的生态化学计量特征. 结果显示:不同生境条件下叶片干物质含量和比叶面积均值分别为0.30 ± 0.01和31.19 ± 1.75 cm2/g;叶片C、N、P、C:N、C:P和N:P均值分别为316.51 ± 20.04 mg/g、16.63 ± 1.00 mg/g、1.10 ± 0.18 mg/g、19.77 ± 1.31、434.64 ± 45.88和22.07 ± 2.06;与区域、全国以及全球尺度相比,黑河下游荒漠优势种总体表现出较低的叶片C含量和比叶面积,较高的C:P和N:P. 在不同生境条件下,叶片性状和化学计量特征存在显著差异性,河岸绿洲和绿洲—戈壁过渡带荒漠优势种叶片N:P大于16,表明河岸绿洲和过渡带荒漠优势种可能倾向于受P元素控制,具有保守性特点;而戈壁荒漠优势种叶片N:P小于14,表明戈壁荒漠优势种可能倾向于受N元素控制,具有较强的适应能力. 上述研究表明,在生长旺季,N和P元素是黑河下游荒漠植物生长的限制性营养元素,与戈壁荒漠地区相比,河岸绿洲和过渡带可能受到P限制作用更为强烈,结果可为荒漠绿洲和戈壁荒漠植被恢复和管理提供科学依据. (图1 表3 参44)
Abstract:
Plant traits are influenced by the interaction between plants and environment, and the study of leaf traits and ecological stoichiometry of plants in different habitats can reveal how plants respond and adapt to environmental changes. In the lower reaches of Heihe River, dominant desert community species distributed in riparian oasis, Gobi desert–oasis ecotone, and Gobi desert, were selected, and leaf dry matter content, specific leaf area, and stoichiometry of leaf C, N, and P of these species in different habitats were investigated during the growing season. The results showed that the average leaf dry matter content and specific leaf area of desert dominant species were 0.30 ± 0.01 and 31.19 ± 1.75 cm2/g, respectively. The average leaf C, leaf N, leaf P, leaf C/N, leaf N/P, and leaf C/P were 316.25 ± 20.04 mg/g, 16.63 ± 1.00 mg/g, 1.10 ± 0.18 mg/g, 19.77 ± 1.31, 434.64 ± 45.88, and 22.07 ± 2.06, respectively. Compared to the regional, national, and global scales, the dominant desert species in the lower reaches of Heihe River were characterized by lower leaf C and SLA but higher C:P and N:P. There were significant differences in leaf traits and leaf stoichiometric traits among different habitats. Leaf N:P of dominant desert species in riparian oasis and Gobi desert–oasis ecotone was greater than 16, indicating that these plants might be more limited by P than by N and that they are more conservative, but the leaf N:P of these plants in the Gobi desert was less than 14, indicating that these plants might be more limited by N than by P and have a high level of adaptability. Our observations indicated that N and P were the limiting nutrients for desert plants in the growing season, and compared with the Gobi desert area in the lower reaches of Heihe River, the dominant desert species of riparian oasis and Gobi desert–oasis ecotone may be more strongly affected by P limitation. These results provide a scientific basis for vegetation restoration and sustainable management in desert oasis and Gobi Desert area.

参考文献/References:

1 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38 (19): 6787-6796 [He NP, Liu CC, Zhang JH, Xu L, Yu GR. Perspectives and challenges in plant traits: From organs to communities [J]. Acta Ecol Sin, 2018, 38 (19): 6787-6796]
2 He NP, Liu CC, Piao SL, Sack L, Xu L, Luo YQ, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR. Ecosystem traits linking functional traits to macroecology [J]. Trends Ecol Evol, 2019, 34 (3): 200-210
3 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M, Niinemets B, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum [J]. Nature, 2004, 428 (6985): 821-827
4 Wang LL, Zhao GX, Li M, Zhang MT, Zhang LF, Zhang XF, An LZ, Xu SJ. C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, Northwest China [J]. PLoS ONE, 2015, 10 (3): e0119935
5 Shipley B, Vile D, Garnier E, Wright I, Poorter H. Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models [J]. Funct Ecol, 2005, 19 (4): 602-615
6 武燕, 尹建军, 李善家. 黑河下游荒漠植物黑果枸杞叶片性状特征及其盐分响应[J]. 生态学杂志, 2017, 36 (5): 1277-1284 [Wu Y, Yin JJ, Li SJ. Leaf traits of desert plant Lycium ruthenicum Murr. in the lower reaches of Heihe river in response to salinity [J]. Chin J Ecol, 2017, 36 (5): 1277-1284]
7 Güsewell S. N:P ratios in terrestrial plants: variation and functional significance [J]. New Phytol, 2004, 164 (2): 243-266
8 Aerts R, Chapin FSI. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns [J]. Adv Ecol Res, 2000, 30 (8): 1-67
9 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 2015, 39 (2): 206-216 [Wang CS, Wang SP. A review of research on responses of leaf traits to climate change [J]. Chin J Plant Ecol, 2015, 39 (2): 206-216]
10 耿倩倩, 杨九艳, 李奉时, 杨欢, 张亚杰. 内蒙古高原锦鸡儿属地理替代种植物叶表皮微形态对不同气候环境的适应特征[J]. 应用与环境生物学报, 2019, 25 (2): 281-290 [Geng QQ, Yang JY, Yang FS, Zhang YJ. Adaptation characteristics of leaf epidermis micromorphology of Caragana in different climate and environment in Inner Mongolia Plateau [J]. Chin J Appl Environ Biol, 2019, 25 (2): 281-290]
11 Noy-Meir I. Desert ecosystems: environment and producers [J]. Annu Rev Ecol Evol S, 1973, 4: 25-51
12 杨本漫, 王若水, 肖辉杰, 曹琪琪, 刘涛. 黄河上游半干旱盐渍区柽柳群落土壤水盐空间变化[J]. 应用与环境生物学报, 2018, 24 (2): 230-238 [Yang BM, Wang RS, Xiao HJ, Cao QQ, Liu T. Spatial variability in soil water and salinity in Tamarix community in a semiarid saline region of the upper Yellow River [J]. Chin J Appl Environ Biol, 2018, 24 (2): 230-238]
13 张晓龙, 周继华, 蔡文涛, 管天玉, 高楠楠, 杜会, 姜联合, 来利明, 杨大文, 丛振涛, 郑元润. 水分梯度下黑河流域荒漠植物群落多样性特征[J]. 生态学报, 2017, 37 (14): 4627-4635 [Zhang XL, Zhou JH, Cai WT, Guan TY, Gan NN, Du H, Jiang LH, Lai LM, Yang DW, Cong ZT, Zheng YR. Diversity characteristics of plant communities in the arid desert of the Heihe basin under different moisture gradients [J]. Acta Ecol Sin, 2017, 37 (14): 4627-4635]
14 Zhang XL, Guan TY, Zhou JH, Cai WT, Gao NN, Du H, Jiang LH, Lai LM, Zheng YR. Groundwater depth and soil properties are associated with variation in vegetation of a desert riparian ecosystem in an arid area of china [J]. Forests, 2018, 9 (1): 34
15 张珂, 何明珠, 李新荣, 谭会娟, 高艳红, 李刚, 韩国君, 吴杨杨. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014, 34 (22): 6538-6547 [Zhang K, He MZ, Li XR, Tan HJ, Gao YH, Li G, Han GJ, Wu YY. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert [J]. Acta Ecol Sin, 2014, 34 (22): 6538-6547]
16 Ding JY, Zhao WW, Daryanto S, Wang LX, Fan H, Feng Q, Wang YP. The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China. Hydrol Earth Syst Sc, 2017, 21 (5): 2405-2419
17 Zhu JT, Yu JJ, Wang P, Yu Q, Eamus D. Variability in groundwater depth and composition and their impacts on vegetation succession in the lower Heihe River Basin, north-western China [J]. Mar Freshwater Res, 2014, 65 (3): 206-217
18 史军辉, 王新英, 刘茂秀, 马学喜. 不同林龄胡杨林叶片与土壤的化学计量特征[J]. 干旱区研究, 2017, 34 (4): 815-822 [Shi JH, Wang XY, Liu MX, Ma XX. Stoichiometric characteristics of leaves of Populus euphratica with different stand ages and soil [J]. Arid Zone Res, 2017, 34 (4): 815-822]
19 Zheng SX, Shangguan ZP. Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China [J]. Trees, 2007, 21 (3): 357-370
20 智颖飙, 刘珮, 马慧, 路战远, 崔艳, 孙安安, 姚一萍, 张德健, 刘海英, 红鸽, 刘钟龄, 李雪飞, 张荷亮. 中国荒漠植物生态化学计量学特征与驱动因素[J]. 内蒙古大学学报(自然科学版), 2017, 48 (1): 97-105 [Zhi YB, Liu P, Ma H, Lu ZY, Cui Y, Sun AA, Yao YP, Zhang JD, Liu HY, Hong G, Liu ZL, Li XF, Zhang HL. The eco-stoichiometric characteristics and driving factors of desert plants in China [J]. J Inner Mongolia Univ (Nat Sci Edn), 2017, 48 (1): 97-105]
21 Zhao N, He NP, Wang QF, Zhang XY, Wang RL, Xu ZW, Yu GR. The altitudinal patterns of leaf C:N:P stoichiometry are regulated by plant growth form, climate and soil on Changbai mountain, China [J]. PLoS ONE, 2014, 9 (4): e95196
22 Zhu YH, Chen YN, Ren LL, Lü HS, Zhao WZ, Yuan F, Xu M. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: problems and strategies [J]. Ecol Eng, 2016, 94: 629-637
23 Fu AH, Chen YN, Li WH. Water use strategies of the desert riparian forest plant community in the lower reaches of Heihe River Basin, China [J]. Sci China Earth Sci, 2014, 57 (6): 1293-1305
24 张瑞红, 蔡文涛, 来利明, 周继华, 姜联合, 杜会, 王永吉, 郑元润. 鄂尔多斯高原本氏针茅与油蒿群落过渡过程中的植被动态[J]. 应用与环境生物学报, 2018, 24 (2): 200-206 [Zhang RH, Cai WT, Lai LM, Zhou JH, Jiang LH, Du H, Wang YJ, Zheng YR. Vegetation dynamics in succession process from Stipa bungeana to Artemisia ordosica in the Ordos Plateau [J]. Chin J Appl Environ Biol, 2018, 24 (2): 200-206]
25 Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW. Nutritional constraints in terrestrial and freshwater food webs [J]. Nature, 2000, 408 (6812): 578-580
26 Dodd GL, Donovan LA. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs [J]. Am J Bot, 1999, 86 (8): 1146-1153
27 Rahnama A, James RA, Poustini K, Munns R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil [J]. Funct Plant Biol, 2010, 37 (3): 255-263
28 Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings [J]. Crop Sci, 2000, 40 (2): 482-487
29 Zhu JK. Regulation of ion homeostasis under salt stress [J]. Curr Opin Plant Biol, 2003, 6 (5): 441-445
30 McCree K. Whole-plant carbon balance during osmotic adjustment to drought and salinity stress [J]. Funct Plant Biol, 1986, 13 (1): 33-43
31 Baki GK, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser WM. Nitrate reductase in Zea mays L. under salinity [J]. Plant Cell Environ, 2000, 23 (5): 515-521
32 Mansour MMF. Nitrogen containing compounds and adaptation of plants to salinity stress [J]. Biol Plantarum, 2000, 43 (4): 491-500
33 杨思琪, 赵旭剑, 森道, 沈海花, 韩文轩. 天山中段植物叶片碳氮磷化学计量及其海拔变化特征[J]. 干旱区研究, 2017, 34 (6): 1371-1379 [Yang SQ, Zhao XJ, Sen D, Shen HH, Han WX. Leaf C, N and P chemometries and their altitudinal variations in the central Tianshan mountains [J]. Arid Zone Res, 2017, 34 (6): 1371-1379]
34 李玉霖, 毛伟, 赵学勇, 张铜会. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31 (8): 1716-1725 [Li YL, Mao W, Zhao XY, Zhang TH. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China [J]. Environ Sci, 2010, 31 (8): 1716-1725]
35 Rong QQ, Liu JT, Cai YP, Lu ZH, Zhao ZZ, Yue WC, Xia JB. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China [J]. Ecol Eng, 2015, 76: 57-65
36 汪涛, 杨元合, 马文红.中国土壤磷库的大小、分布及其影响因素[J]. 北京大学学报(自然科学版), 2008, 44 (6): 945-952 [Wang T, Yang YH, Ma WH. Storage, patterns and environmental controls of soil phosphorus in China [J]. Acta Sci Nat Univ Pekinensis, 2008, 44 (6): 945-952]
37 Han WX, Fang JY, Guo DL, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China [J]. New Phytol, 2005, 168 (2): 377-385
38 Vitousek PM, Porder S, Houlton BZ, Chadwick OA. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecol Appl, 2010, 20 (1): 5-15
39 王璐, 喻阳华, 邢容容, 秦仕忆. 喀斯特高寒干旱区不同经济树种的碳氮磷钾生态化学计量特征[J]. 生态学报, 2018, 38 (15): 5393-5403 [Wang L, Yu YH, Xing RR, Qin SY. Ecological stoichiometry characteristics of carbon, nitrogen, phosphorus, and potassium of different economic tree species in the karst frigid and arid area [J]. Acta Ecol Sinica, 2018, 38 (15): 5393-5403]
40 Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea: How can it occur? [J]. Biogeochemistry, 1991, 13 (2): 87-115
41 Güsewell S, Koerselman W. Variation in nitrogen and phosphorus concentrations of wetland plants [J]. Perspect Plant Evol, 2002, 5 (1): 37-61
42 Wright IJ, Westoby M. Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs leaf function in 28 Australian woody species [J]. Funct Ecol, 2000, 14 (1): 97-107
43 Suter M, Edwards PJ. Convergent succession of plant communities is linked to species’ functional traits [J]. Pers Plant Ecol, 2013, 15 (4): 217-225
44 Eallonardo AS, Leopold DJ, Fridley JD, Stella JC. Salinity tolerance and the decoupling of resource axis plant traits [J]. J Veg Sci, 2013, 24 (2): 365-374

相似文献/References:

[1]吴春梅,黎云祥,权秋梅,等.淫羊藿果实成熟与生境的关系[J].应用与环境生物学报,2008,14(02):187.
 WU Chunmei,et al..Relationship Between Fruit Maturity and Habitats of Epimedium brevicornum[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):187.
[2]王乾,朱单,吴宁,等.四川道孚县芒苞草生境的植物群落结构和土壤元素含量[J].应用与环境生物学报,2009,15(01):1.[doi:10.3724/SP.J.1145.2009.00001]
 WANG Qian,ZHU Dan,WU Ning,et al.Plant Community Structure and Soil Element Content in Achanthoclamys bracteata Habitats in Daofu County, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):1.[doi:10.3724/SP.J.1145.2009.00001]
[3]仝瑞建,刘雪琴,王发园,等.沙田柚根围AM真菌的生境适宜性和季节变化性[J].应用与环境生物学报,2011,17(05):684.[doi:10.3724/SP.J.1145.2011.00684]
 TONG Ruijian,LIU Xueqin,WANG Fayuan,et al.Effects of Different Habitats and Seasons on Arbuscular Mycorrhizal Fungi in Rhizosphere of Citrus grandis cv. Changshou Shatian You[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):684.[doi:10.3724/SP.J.1145.2011.00684]
[4]井学辉,曹磊,郭仲军,等.阿尔泰山小东沟林区植被随地形分布规律[J].应用与环境生物学报,2015,21(03):533.[doi:10.3724/SP.J.1145.2014.10010]
 JING Xuehui,CAO Lei,GUO Zhongjun,et al.Distribution of vegetation types with topography in the Xiaodonggou forest region of Altai Mountains, northwest China[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):533.[doi:10.3724/SP.J.1145.2014.10010]
[5]孙莹,石锦安,邵小鹏,等.不同生境条件下光照强度对蓝花楹光合色素含量及开花的影响[J].应用与环境生物学报,2015,21(06):1150.[doi:10.3724/SP.J.1145.2015.07036]
 SUN Ying,SHI Jinan,SHAO Xiaopeng,et al.Effects of light intensity on photosynthetic pigment content and flowering of Jacaranda mimosifolia D. Don in different habitats[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):1150.[doi:10.3724/SP.J.1145.2015.07036]
[6]王丽华,高景,王金牛,等.高山草地长花马先蒿的性状和生物量分配对坡向的适应[J].应用与环境生物学报,2017,23(04):648.[doi:10.3724/SP.J.1145.2016.08026]
 WANG Lihua,#,GAO Jing,et al.Repair activity of Gln336 on the in FAD binding domain of CPD photolyase in Dunaliella salina under stress[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):648.[doi:10.3724/SP.J.1145.2016.08026]
[7]张潇月,鱼舜尧,李婷婷,等.金马河温江段河岸带不同生境下草本植物多样性和植物区系与土壤环境因子的关系[J].应用与环境生物学报,2019,25(04):838.[doi:10.19675/j.cnki.1006-687x.2018.10017]
 ZHANG Xiaoyue,YU Shunyao,LI Tingting,et al.Relationship between species diversity, flora, and soil environmental factors of the herb community in different habitats in the Wenjiang Section of the Jinma River[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):838.[doi:10.19675/j.cnki.1006-687x.2018.10017]

更新日期/Last Update: 2019-12-25