|本期目录/Table of Contents|

[1]成家龙,陈大松,李友国.高效固氮大豆根瘤菌SMH12的全基因组测序及比较基因组分析[J].应用与环境生物学报,2019,25(06):1365-1374.[doi:10.19675/j.cnki.1006-687x.2019.04011]
 CHENG Jialong,CHEN Dasong & LI Youguo**.Whole genome sequencing and genome comparative analysis using the highly nitrogen-fixing strain, Sinorhizobium fredii SMH12[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1365-1374.[doi:10.19675/j.cnki.1006-687x.2019.04011]
点击复制

高效固氮大豆根瘤菌SMH12的全基因组测序及比较基因组分析
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1365-1374
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Whole genome sequencing and genome comparative analysis using the highly nitrogen-fixing strain, Sinorhizobium fredii SMH12
作者:
成家龙陈大松李友国
华中农业大学生命科学技术学院,农业微生物学国家重点实验室 武汉 430070
Author(s):
CHENG Jialong CHEN Dasong & LI Youguo**
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
关键词:
高效固氮费氏中华根瘤菌SMH12全基因组测序比较基因组分析
Keywords:
high-efficiency nitrogen-fixing Sinorhizobium fredii SMH12 whole genome sequencing comparative genomic analysis
分类号:
Q939.114 : Q78
DOI:
10.19675/j.cnki.1006-687x.2019.04011
摘要:
费氏中华根瘤菌SMH12(Sinorhizobium fredii SMH12),生长代时较短,属于快生型大豆根瘤菌. SMH12具有高效固氮、宿主范围广、匹配性强、遗传物质稳定等特点,为充分开发该菌应用潜力和研究价值,有必要解析SMH12的基因组序列. 采用Illumina Hiseq与Pacbio测序技术相结合对SMH12菌株进行全基因组测序. 进一步使用相关软件对测序数据进行基因组的组装、基因预测与功能注释、COG/GO聚类分析以及比较基因组分析. 测序结果显示,SMH12基因组包含1条染色体和2个质粒,染色体大小为4 022 924 bp,质粒pSfSMH12a大小为2 394 395 bp,质粒pSfSMH12b大小为556 376bp,序列已提交至GenBank数据库,登录号为CP035038-CP035040. 基因预测与rRNA、tRNA查找显示,SMH12基因组含有6 836个基因,有9个rRNA和55个tRNA. 比较基因组分析的直系同源基因比对与共线性分析显示,SMH12与S. fredii HH103大部分基因相同,亲缘关系最密切;只有约17%的基因不同. COG分类比较分析显示,SMH12中转座因子和碳水化合物的转运与代谢这两类相关基因的占比明显高于Bradyrhizobium diazoefficiens USAD110. 本研究首次报道SMH12基因组序列并分析了其基因组基本特征,与其他代表性大豆根瘤菌进行了比较基因组分析. 结果丰富了根瘤菌基因组数据库,也为构建高效固氮的大豆根瘤菌工程菌提供了一定依据和基因资源. (图6 表2 参35)
Abstract:
Sinorhizobium fredii SMH12 is a fast-growing soybean rhizobium that has a short generation time, high symbiotic nitrogen-fixing efficiency, wide host range, strong compatibility, and genetic stability. To fully utilize the potential application of SMH12 in agricultural production and scientific research, it is imperative that whole genome sequencing of S. fredii SMH12 be carried out followed by a comparative analysis with a related rhizobia genome. Whole-genome sequencing of SMH12 was carried out by Illumina Hiseq and Pacbio sequencing. Genome assembly, gene prediction and functional annotation, GO/COG cluster analysis, and comparative genomic analysis were carried out using the relevant bioinformatics software. The SMH12 genome was found to contain 1 chromosome and 2 plasmids possessing sizes of 4 022 924 bp, 2 394 395 bp (plasmid pSfSMH12a), and 556 376 bp (plasmid pSfSMH12b), respectively. The genomic sequences were deposited in GenBank with accession numbers CP035038-CP035040. The SMH12 genome was found to contain 6 836 genes, including 9 rRNAs and 55 tRNAs. Comparative genomic analysis revealed that only 17% of genes differed between SMH12 and S. fredii HH103, which further suggest that SMH12 has the closest genetic relation with HH103. A classified comparative analysis based on the proteins COG category showed that the proportion of X (mobilome, prophages, transposons) and G (carbohydrate transport and metabolism) in SMH12 was significantly higher than that in Bradyrhizobium diazoefficiens USAD110. Altogether, genome sequencing and comparative analysis of S. fredii SMH12 provided novel gene resources that could be deposited into the database of rhizobia genomes. They also revealed the scientific basis and guidance required to construct an engineered rhizobia strain with high nitrogen-fixing ability.

参考文献/References:

1. Poole P, Ramachandran V, Terpolilli J. Rhizobia: from saprophytes to endosymbionts [J]. Nat Rev Microbiol, 2018, 16 (5): 291-303
2. Zhao L, Fan MC, Zhang DH, Yang RP, Zhang FL, Xu L, Wei XL, Shen YY, Wei GH. Distribution and diversity of rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in Northwest China [J]. Syst Appl Microbiol, 2014, 37 (6): 449-456
3. Yang SH, Chen WH, Wang ET, Chen WF, Yan J, Han XZ, Tian CF, Sui XH, Singh RP, Jiang GM, Chen WX. Rhizobial biogeography and inoculation application to soybean in four regions across China [J]. J Appl Microbiol, 2018, 125 (3): 853-866
4. Lopez-Baena FJ, Ruiz-Sainz JE, Rodriguez-Carvajal MA, Vinardell JM. Bacterial molecular signals in the Sinorhizobium fredii-soybean symbiosis [J]. Int J Mol Sci, 2016, 17 (5): 755
5. Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J, Margaret I, Puhler A, Ruiz-Sainz JE, Schneiker-Bekel S, Szczepanowski R, Vinardell JM, Zehner S, Gottfert M. Genome sequence of the soybean symbiont Sinorhizobium fredii HH103 [J]. J Bacteriol, 2012, 194 (6): 1617-1618
6. Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Roser A, Flores M, Palacios R, Brenner S, Gottschalk G, Schmitz RA, Broughton WJ, Perret X, Strittmatter AW, Streit WR. Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems [J]. Appl Environ Microbiol, 2009, 75 (12): 4035-4045
7. Schuldes J, Rodriguez Orbegoso M, Schmeisser C, Krishnan HB, Daniel R, Streit WR. Complete genome sequence of the broad-host range strain Sinorhizobium fredii USDA257 [J]. J Bacteriol, 2012, 194 (16): 4483
8. Pueppke SG, Broughton WJ. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges [J]. Mol Plant Microbe Interact, 1999, 12 (4): 293-318
9. Temprano-Vera F, Rodriguez-Navarro DN, Acosta-Jurado S, Perret X, Fossou RK, Navarro-Gomez P, Zhen T, Yu D, An Q, Buendia-Claveria AM, Moreno J, Lopez-Baena FJ, Ruiz-Sainz JE, Vinardell JM. Sinorhizobium fredii strains HH103 and NGR234 form nitrogen fixing nodules with diverse wild soybeans (Glycine soja) from central China but are ineffective on northern China accessions [J]. Front Microbiol, 2018, 9: 2843
10. Dowdle SF, Bohlool BB. Predominance of fast-growing Rhizobium japonicum in a soybean field in the People’s Republic of China [J]. Appl Environ Microbiol, 1985, 50 (5): 1171-1176
11. Heron DS, Pueppke SG. Mode of infection, nodulation specificity, and indigenous plasmids of 11 fast-growing Rhizobium-japonicum strains [J]. J Bacteriol, 1984, 160 (3): 1061-1066
12. Rodriguez-Navarro DN, Ruiz-Sainz JE, Buendia-Claveria AM, Santamaria C, Balatti PA, Krishnan HB, Pueppke SG. Characterization of fast-growing rhizobia from nodulated soybean [Glycine max (L.) Merr.] in Vietnam [J]. System Appl Microbiol, 1996, 19 (2): 240-248
13. Rodr??guez-Navarro DN, Bellog??n R, Camacho M, Daza A, Medina C, Ollero FJ, Santamar??a C, Ru??z-Sa??nz JE, Vinardell JM, Temprano FJ. Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants [J]. Eur J Agron, 2003, 19 (2): 299-309
14. 伍惠, 钟喆栋, 樊伟, 彭亚齐, 杜思, 陈大松, 王学路, 李友国. 8株优良大豆根瘤菌与不同地区27个大豆主栽品种的匹配性研究[J]. 大豆科学, 2017, 36 (3): 405-418 [Wu H, Zhong ZD, Fan W, Peng YQ, Du S, Chen DS, Wang XL, Li YG. Symbiotic compatibility among eight elite soybean rhizobia strains and twenty-seven soybean cultivars from different planting regions [J]. Soybean Sci, 2017, 36 (3): 405-418]
15. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW. SOAP de novo 2: an empirically improved memory-efficient short-read de novo assembler [J]. Gigascience, 2012, 1 (1): 18
16. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER [J]. Nucleic Acids Res, 1999, 27 (23): 4636-4641
17. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 [J]. Nucleic Acids Res, 2000, 28 (1): 45-48
18. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldon T, Rattei T, Creevey C, Kuhn M, Jensen LJ, von Mering C, Bork P. EggNOG v4.0: nested orthology inference across 3686 organisms [J]. Nucleic Acids Res, 2014, 42 (Database issue): D231-D239
19. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res, 2000, 28 (1): 27-30
20. Consortium GO. The Gene Ontology (GO) database and informatics resource [J]. Nucleic Acids Res, 2004, 32 (Database issue): D258-D261
21. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes [J]. Nucleic Acids Res, 2007, 35 (9): 3100-3108
22. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J]. Nucleic Acids Res, 1997, 25 (5): 955-964
23. Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes [J]. Genome Res, 2003, 13 (9): 2178-2189
24. Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity [J]. Nucleic Acids Res, 2012, 40 (7): e49
25. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics [J]. Genome Res, 2009, 19 (9): 1639-1645
26. 王善明. 华癸中慢生根瘤菌7653R全基因组测序及比较基因组学研究[D]. 武汉: 华中农业大学, 2014 [Wang SM. Whole-genome sequencing and comparative genomic analysis of Mesorhizobium huakuii strain 7653R [D]. Wuhan: Huazhong Agriculture University, 2014]
27. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR, Chen WX. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations [J]. PNAS, 2012, 109 (22): 8629-8634
28. Barcellos FG, Menna P, da Silva Batista JS, Hungria M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil [J]. Appl Environ Microbiol, 2007, 73 (8): 2635-2643
29. 焦健, 田长富. 根瘤菌共生固氮能力的进化模式[J]. 微生物学通报, 2019, 46 (2): 388-397 [Jiao J, Tian CF. Evolution of rhizobial nodulation and nitrogen fixation [J]. Microbiol Chin, 2019, 46 (2): 388-397]
30. Vinardell JM, Acosta-Jurado S, Zehner S, Gottfert M, Becker A, Baena I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, McIntosh M, Margaret I, Perez-Montano F, Schneiker-Bekel S, Serrania J, Szczepanowski R, Buendia AM, Lloret J, Bonilla I, Puhler A, Ruiz-Sainz JE, Weidner S. The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behavior with soybean [J]. Mol Plant Microbe Interact, 2015, 28 (7): 811-824
31. Sugawara M, Epstein B, Badgley BD, Unno T, Xu L, Reese J, Gyaneshwar P, Denny R, Mudge J, Bharti AK, Farmer AD, May GD, Woodward JE, Medigue C, Vallenet D, Lajus A, Rouy Z, Martinez-Vaz B, Tiffin P, Young ND,Sadowsky MJ. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies [J]. Genome Biol, 2013, 14 (2): R17
32. Siqueira AF, Ormeno-Orrillo E, Souza RC, Rodrigues EP, Almeida LG, Barcellos FG, Batista JS, Nakatani AS, Martinez-Romero E, Vasconcelos AT, Hungria M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean [J]. BMC Genomics, 2014, 15 (1): 420
33. Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS. Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis [J]. Nature, 2003, 422 (6933): 722-726
34. Prell J, Poole P. Metabolic changes of rhizobia in legume nodules [J]. Trends Microbiol, 2006, 14 (4): 161-168
35. Konstantinidis KT, Tiedje JM. Trends between gene content and genome size in prokaryotic species with larger genomes [J]. PNAS, 2004, 101 (9): 3160-3165
36.

相似文献/References:

[1]张武,田润,申佩弘,等.费氏中华根瘤菌15142的cysDN基因克隆及其相关功能[J].应用与环境生物学报,2011,17(06):864.[doi:10.3724/SP.J.1145.2011.00864]
 ZHANG Wu,TIAN Run,SHEN Peihong,et al.Cloning and Related Function of cysDN in Sinorhizobium fredii 15142[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):864.[doi:10.3724/SP.J.1145.2011.00864]
[2]宋张杨,马婷婷,周燕,等.不同根瘤菌中突变cysDN基因对硫酸盐同化途径的影响[J].应用与环境生物学报,2015,21(02):242.[doi:10.3724/SP.J.1145.2014.10020]
 SONG Zhangyang,MA Tingting,ZHOU Yan,et al.Effect of cysDN genes in different rhziobium on the sulfate assimilation pathway[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):242.[doi:10.3724/SP.J.1145.2014.10020]
[3]成家龙 陈大松 李友国**.高效固氮大豆根瘤菌SMH12的全基因组测序及比较基因组分析*[J].应用与环境生物学报,2020,26(01):1.[doi:10.19675/j.cnki.1006-687x.2019.04011]
 CHENG Jialong,CHEN Dasong & LI Youguo**.Whole genome sequencing of highly nitrogen-fixing strain Sinorhizobium fredii SMH12 and genome comparative analysis *[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1.[doi:10.19675/j.cnki.1006-687x.2019.04011]

更新日期/Last Update: 2019-12-25