|本期目录/Table of Contents|

[1]黄艳,李月蛟,樊利华,等.粗枝云杉外生菌根介导的土壤碳氮过程对增温的响应[J].应用与环境生物学报,2019,25(06):1319-1326.[doi:10.19675/j.cnki.1006-687x.2019.03019]
 HUANG Yan,LI Yuejiao,et al.Response of carbon and nitrogen processes to warming as mediated by ectomycorrhizae of Picea asperata[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1319-1326.[doi:10.19675/j.cnki.1006-687x.2019.03019]
点击复制

粗枝云杉外生菌根介导的土壤碳氮过程对增温的响应
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1319-1326
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Response of carbon and nitrogen processes to warming as mediated by ectomycorrhizae of Picea asperata
作者:
黄艳李月蛟樊利华张子良马志良张林赵春章
1中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室 成都 610041 2中国科学院大学 北京 100049 3四川师范大学生命科学学院 成都 610101 4西华师范大学生命科学学院 南充 637009 5中国科学院青藏高原环境变化与地表过程重点实验室 北京 100085
Author(s):
HUANG Yan1 2 LI Yuejiao1 FAN Lihua3 ZHANG Ziliang1 2 MA Zhiliang4 ZHANG Lin5 & ZHAO Chunzhang1**
1 CAS Key Laboratory Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 College of Life Sciences, Sichuan Normal University, Chengdu 610101, China 4 College of Science, China West Normal University, Nanchong 637009, China 5 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Chinese Academy of Sciences, Beijing 100085, China
关键词:
外生菌根外延菌丝增温土壤酶活性土壤碳氮过程
Keywords:
ectomycorrhiza hyphae warming soil enzyme activity soil carbon and nitrogen process
分类号:
Q948.122.3 : S154.1
DOI:
10.19675/j.cnki.1006-687x.2019.03019
摘要:
开展川西亚高山建群种云杉(Picea asperata)外生菌根及外延菌丝土壤碳(C)和氮(N)过程对增温响应的研究,对于未来气候变化背景下区分及估算菌根与外延菌丝对亚高山针叶林生态系统C、N循环过程的影响具有重要意义. 采用红外辐射加热器模拟气候变暖,同时采用不同孔径生长管区分根系(菌根)(R管)、外延菌丝(H管)和无根无菌丝土壤(C管),研究3种土壤理化性质、土壤有机碳(SOC)、微生物量及土壤C、N转化过程关键土壤酶活性对增温的响应. 结果表明,增温显著降低了3种生长管土壤含水量、硝态氮(NO3--N)与铵态氮(NH4+-N)的含量(P < 0.05),显著提高了β-D-葡萄糖苷酶(BG)(C管除外)及N-乙酰葡萄糖苷酶(NAG)的活性(P < 0.05),而对土壤pH、土壤有机碳、微生物量碳(MBC)、外生菌根真菌(ECMf)生物量均无显著影响(P > 0.05). 无论增温与否,SOC含量与BG、NAG酶活性在R管与H管中均无显著差异,但R管与H管中土壤NO3--N、NH4+-N、SOC含量,ECMf生物量及BG、NAG酶活性均显著高于C管. 此外,增温后H管土壤NO3--N、NH4+-N含量及ECMf生物量,分别由R管的66%、82.1%及74.1%,上升为95.4%、98.2%以及94.2%,二者之间的差异明显缩小. 结果说明外生菌根作为川西亚高山针叶林主要建群种云杉根系的重要组成部分,其外延菌丝对土壤C、N过程,尤其是土壤C库及关键酶活性,具有几乎与根同等重要影响,而未来气候变暖背景下外延菌丝的作用将更为明显. (图4 参50)
Abstract:
It is important to estimate the respective influence of ectomycorrhizae and external hyphae of Picea asperata on C and N cycling in subalpine coniferous forest ecosystems under future warming scenarios. In this study, infrared heaters were used to simulate warming, and growth tubes with different diameter pores were employed to separate soil into three categories: R soil (fine roots), H soil (external hyphae), and C soil (without root and hyphae) in the plots planted with P. asperata. The effects of warming on the physicochemical properties, soil organic carbon (SOC), microbial biomass, and soil enzyme activities in the three ingrowth core soils were determined. The results showed that warming significantly decreased soil moisture content, NO3--N, and NH4+-N contents (P < 0.05), while it significantly increased β-D-glucosidase (BG) and N-acetylglucosidase (NAG) activities (P < 0.05), and it had no significant effects on pH, SOC, and ectomycorrhizal fungal (ECMf) biomass (P > 0.05). On the other hand, regardless of the presence of warming, we recorded no significant difference in SOC content, BG, and NAG activities between R and H soil. However, the contents of NO3--N, NH4+-N, and SOC, ECMf biomass, and the activities of BG and NAG were much higher in R and H soil than those in C soil. Additionally, NO3--N and NH4+-N contents, as well as ECMf biomass in the H soil were about 66%, 82.1%, and 74.1% of these parameters in the R soil in unwarmed plots, respectively; however, these parameters were about 95.4%, 98.2%, and 94.2% in warmed plots, meaning that the disparity of these parameters between H and R soil was obviously reduced by warming. These results indicated that as an important component of P. asperata root systems, external hyphae possibly have equivalent effects on soil C and N processes, especially on SOC and key soil enzyme activities, and these effects will be further amplified by future climate warming.

参考文献/References:

1. Pachauri K, Meyer. Climate Change: 2014 Synthesis Report [R]. Geneva, Switzerland, IPCC, 2014
2. Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options [J]. Nat Rev Microbiol, 2010, 8 (11): 779
3. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. Roots and associated fungi drive long-term carbon sequestration in boreal forest [J]. Science, 2013, 339 (6127): 1615-1618
4. 郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展[J]. 微生物学通报, 2013, 40 (1): 158-171 [Guo LD, Tian CJ. Progress of the function of mycorrhizal fungi in the cycle ofcarbon and nitrogen [J]. Microbiol Chin, 2013, 40 (1): 158-171]
5. Peterson RL, Massicotte HB, Melville LH. Mycorrhizas: anatomy and cell biology [M]. Ottawa: CABI Publishing, 2004
6. Ekblad A, Mikusinska A, Agren GI, Menichetti L, Wallander H, Vilgalys R, Bahr A, Eriksson U. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization [J]. New Phytol, 2016, 211 (3): 874-885
7. Quirk J, Andrews MY, Leake JR, Banwart SA, Beerling DJ. Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes [J]. Biol Lett, 2014, 10 (7): 387-393
8. Paterson E, Sim A, Davidson J, Daniell TJ. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation [J]. Plant Soil, 2016, 408 (1-2): 1-12
9. Zhang ZL, Xiao J, Yuan YS, Zhao CZ, Liu Q, YinHJ. Mycelium- and root-derived C inputs differ in their impacts on soil organic C pools and decomposition in forests [J]. Soil Biol Biochem, 2018, 123: 257-265
10. 李月蛟, 朱利英, 尹华军, 刘庆, 蒋先敏, 赵春章. 连续3年夜间增温和施氮对云杉外生菌根及菌根真菌多样性的影响[J]. 生态学报, 2015, 35 (9): 2967-2977 [Li YJ, Zhu LY, Yin HJ, Li Q, Jiang XM, Zhao CZ. Effects of 3-year continuous night-time warming and nitrogen fertilization on ectomycorrhizae of Picea asperata and the ectomycorrhizal fungal diversity [J]. Acta Ecol Sin, 2015, 35 (9): 2967-2977]
11. Jalonen R, Nygren P, Sierra J. Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks [J]. Plant Cell Environ, 2009, 32 (10): 1366-1376
12. Mar Vázquez, M, César S, Azcón R, Barea JM. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants [J]. Appl Soil Ecol, 2000, 15 (3): 261-272
13. Leberecht M, Dannenmann M, Tejedor J, Simon J, Rennenberg H, Polle A. Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees [J]. Plant Cell Environ, 2016, 39 (12): 2691-2700
14. Mucha J, Peay KG, Smith DP, Reich PB, Stefański A, Hobbie SE. Effect of simulated climate warming on the ectomycorrhizal fungal community of boreal and temperate host species growing near their shared ecotonal range limits [J]. Microb Ecol, 2018, 75 (2): 348-363
15. Solly EF, Lindahl BD, Dawes MA, Peter M, Souza RC, Rixen C, Hagedorn F. Experimental soil warming shifts the fungal community composition at the alpine treeline [J]. New Phytol, 2017, 215 (2): 766-778
16. 常越. 增温施氮条件下AM真菌对松嫩草原土壤碳氮的影响[D]. 长春:东北师范大学, 2017 [Chang Y. Effects of AM fungi on soil carbon and nitrogen under warming andnitrogen deposition in songnen meadow steppe [D]. Changchun: Northeast Normal University, 2017]
17. Fernandez CW, Nguyen NH, Stefanski A, Han Y, Hobbie SE, Montgomery RA, Reich PB, Kennedy PG. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Global Change Biol, 2016, 23 (4): 1598-1609
18. Clemmensen KE, Michelsen A, Jonasson S, Shaver GR. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems [J]. New Phytol, 2016, 171 (2): 391-404
19. Rillig MC, Wright SF, Shaw MR, Field CB. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland [J]. Oikos, 2002, 97 (1): 52-58
20. Deslippe JR, Hartmann M, Mohn WW, Simard SW. Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra [J]. Global Change Biol, 2011, 17 (4):1625-1636
21. Kasurinen A, Koikkalainen K, Anttonen MJ, Possen B, Oksanen E, Rousi M, Vapaavuori E, Holopainen T. Root morphology, mycorrhizal roots and extramatrical mycelium growth in silver birch ( Betula pendula, Roth) genotypes exposed to experimental warming and soil moisture manipulations [J]. Plant Soil, 2016, 407 (1-2): 341-353
22. Kasai K, Usami T, Lee J, Ishikawa SH, Oikawa T. Responses of ectomycorrhizal colonization and morphotype assemblage of quercus myrsinaefolia seedlings to elevated air temperature and elevated atmospheric CO2 [J]. Microbes Environ, 2001, 15 (4): 197-207
23. D’Amore DV, Hennon PE, Schaberg PG, Hawley GJ. Adaptation to exploit nitrate in surface soils predisposes yellow-cedar to climate-induced decline while enhancing the survival of western redcedar: a new hypothesis [J]. For Ecol Manage, 2009, 258 (10), 2261-2268
24. Nan HW, Liu Q, Chen JS, Cheng XY, Yin HJ, Yin CY, Zhao CZ. Effects of nutrient heterogeneity and competition on root architecture of spruce seedlings: implications for an essential feature of root foraging [J]. PLoS ONE, 2013, 8 (6): e65650
25. Heinemeyer A, Hartley IP, Evans SP, De la Fuente JAC, Ineson P. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas [J]. Global Change Biol, 2007, 13 (8): 1786-1797
26. Yin, HJ, Xu ZF, Chen Z, Wei YY, Liu Q. Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming [J]. Appl Soil Ecol, 201, 59 (4): 60-67
27. 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000 [Lu RK. Soil Argrochemistry Analysis Protocoes [M]. Beijing: China Agriculture Science Press, 2000]
28. Wallander H, Nilsson LO, Hagerberg D, B??th E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field [J]. New Phytol, 2001, 151 (3): 753-760
29. Bossio DA, Scow KM. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns [J]. Microb Ecol, 1998, 35 (3): 265-278
30. Vance ED, Brooks PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C [J]. Soil Biol Biochem, 1987, 19 (6): 703-707
31. Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B1, Allison SD1, Crenshaw C1, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH. Stoichiometry of soil enzyme activity at global scale [J]. Ecol Lett, 2010, 11 (11): 1252-1264
32. H?gberg MN, H?gberg P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest Soil [J]. New Phytol, 2002, 154 (3): 791-795
33. Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, Angelis PD, Miglietta F, Peressotti A. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter [J]. Plant Soil, 2006, 281 (1-2): 15-24
34. Whitemonsant AC, Clark GJ, Ng Kam Chuen MAG, Tang C. Experimental warming and antecedent fire alter leaf element composition and increase soil C:N ratio in subalpine open heathland [J]. Sci Total Environ, 2017, 595: 41-50
35. Hu CX, Tian ZW, Gu SL, Guo H, Fan YH, Abid M, Chen K, Jiang D, Cao WX, Dai TB. Winter and spring night-warming improve root extension and soil nitrogen supply to increase nitrogen uptake and utilization of winter wheat (Triticum aestivum L.) [J]. Eur J Agron, 2018, 96: 96-107
36. Chang RY, Wang GX, Yang YH, Chen XP. Experimental warming increased soil nitrogen sink in the Tibetan permafrost [J]. J Geophys Res-Biogeosci, 2017, 122 (7): 1870-1879
37. Wang Y, Liu Y, Liu R , Zhang A, Yang S, Liu H, Zhou Y, Yang Z. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China [J]. Sci Rep, 2017, 7 (1):1592
38. Yin CY, Pu XZ, Xiao QY, Zhao CZ, Liu Q. Effects of night warming on spruce root around non-growing season vary with branch order and month [J]. Plant Soil, 2014, 380 (1-2): 249-263
39. Zhao CZ, Liu Q. Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization [J]. Acta Physiol Plant, 2009, 31 (1): 163-173
40. Ueda MU, Muller O, Nakamura M, Nakaji T, Hiura T. Soil warming decreases inorganic and dissolved organic nitrogen pools by preventing the soil from freezing in a cool temperate forest [J]. Soil Biol Biochem, 2013, 61: 105-108
41. Johansson EM, Fransson PMA, Finlay RD, van Hees PAW. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2 [J]. Soil Biol Biochem, 2009, 41 (6): 1111-1116
42. Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2 [J]. Ecol Lett, 2012, 15 (9): 1042-1049
43. 徐昕, 马伟胜, 代静玉, 黄兆琴, 程德义, 杜超. 增温条件下不同土壤粒级有机碳和全氮的分布[J]. 水土保持通报, 2018, 38 (5): 77-82 [Xu X, Ma WS, Dai JY, Huang YQ, Cheng DY, Du C. Distribution of organic carbon and total nitrogen in different soil grain under temperature increase. Bull Soil Water Conserv, 2018, 38 (5): 77-82]
44. 马志良, 赵文强, 刘美, 刘庆. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响[J]. 应用生态学报, 2019, 30 (6): 1893-1900 [Ma ZL, Zhao WQ, Liu M, Liu Q. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem [J]. Chin J Appl Ecol, 2019, 30 (6): 1893-1900]
45. Bergner B, Johnstone J, Treseder KK. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest [J]. Global Change Biol, 2010, 10 (12): 1996-2004
46. 王军, 王冠钦, 李飞, 彭云峰, 杨贵彪, 郁建春, 周国英, 杨元合. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42 (1): 116-125 [Wang J, Wang GQ, Li F, Peng YF, Yang GB, Yu JC, Zhou GY, Yang YH. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plant Ecol, 2018, 42 (1): 116-125]
47. Allison SD, Romero-Olivares AL, Lu Y, Taylor JW, Treseder KK. Temperature sensitivities of extracellular enzyme Vmax and Km across thermal environments [J]. Global Change Biol, 2018, 24 (7): 2884-2897
48. 徐振锋, 唐正, 万川, 熊沛, 曹刚, 刘庆. 模拟增温对川西亚高山两类针叶林土壤酶活性的影响[J]. 应用生态学报, 2010, 21 (11): 2727-2733 [Xu ZF, Tang Z , Wan C, Xiong P, Liu Q. Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in western Sichuan [J]. Chin J Appl Ecol, 2010, 21 (11): 2727-2733]
49. 杨林, 陈亚梅, 和润莲, 邓长春, 刘军伟, 刘洋. 高山森林土壤微生物群落结构和功能对模拟增温的响应[J]. 应用生态学报, 2016, 27 (9): 2855-2863 [Yang L, Chen YM, He RL, Deng CC, Liu JW, Liu Y. Responses of soil microbial community structure and function to simulated warming in alpine forest [J]. Chin J Appl Ecol, 2016, 27 (9): 2855-2863]
50. Ma ZL, Zhao WQ, Zhao CZ, Wang D, Liu M, Li DD, Liu Q. Plants regulate the effects of experimental warming on the soil microbial community in an alpine scrub ecosystem [J]. PLoS ONE, 2018, 13 (4): e0195079

相似文献/References:

[1]李强,李树红,李小林,等.野生翘鳞肉齿菌子实体内生菌多样性[J].应用与环境生物学报,2015,21(04):629.[doi:10.3724/SP.J.1145.2015.02004]
 LI Qiang,LI Shuhong,LI Xiaolin,et al.Diversity of endophytic microorganisms in fresh fruiting bodies of Sarcodon imbricatus[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):629.[doi:10.3724/SP.J.1145.2015.02004]

更新日期/Last Update: 2019-12-25