|本期目录/Table of Contents|

 YANG Bin,PENG Changhui,**,et al.Effects of drought stress on leaf nitrogen content, rate of photosynthesis, and non-structural carbohydrates in Robinia pseudoacacia L. seedlings[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1261-1269.[doi:10.19675/j.cnki.1006-687x.2019.03011]





Effects of drought stress on leaf nitrogen content, rate of photosynthesis, and non-structural carbohydrates in Robinia pseudoacacia L. seedlings
1西北农林科技大学林学院生态预测与全球变化研究中心 杨凌 712100 2东北师范大学泥炭沼泽研究所湿地生态与植被恢复国家环境保护重点实验室 长春 130024 3魁北克大学蒙特利尔分校环境科学研究所生物科学系 加拿大蒙特利尔 C3H3P8
YANG Bin1 PENG Changhui1 3** ZHANG Xian1 LIU Weiguo1 DUAN Min1 & WANG Meng2
1 Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling 712100, China 2 State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China 3 Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal C3H3P8, Canada
drought stress Robinia pseudoacacia L. seedling nitrogen content in leaf photosynthetic rate non-structural carbohydrate (NSC)
Q945.78 : S718.45
全球气候变化背景下,极端干旱和持续干旱频发,给中纬度地区的生态系统带来了巨大的影响. 为揭示干旱胁迫的影响机制,采用盆栽试验,分析2年树龄刺槐幼苗(Robinia pseudoacacia L.)叶生物量、氮含量、净光合速率和非结构性碳水化合物(Non-structural carbohydrates,NSC)及组分对不同干旱梯度的响应. 试验包括极度干旱(Extreme drought,ED)、中度干旱(Moderate drought,MD)和对照组3个处理,其盆钵土壤相对含水量分别为田间持水量的10%、30%和70%. 结果表明,在控水后0-30 d期间,ED和MD下槐树幼苗的叶片生物量和光合速率均持续下降,而对照的净光合速率保持平稳,生物量逐渐增多;总非结构性碳水化合物(Total NSC,TNSC)、可溶性糖(Soluble sugars,SS)以及SS与淀粉含量的比值(RSS)变化规律类似,即在ED和MD处理下均呈现先增后减的趋势,而在对照条件下均保持平稳. 叶片淀粉含量与光合速率和生物量干重的变化规律类似. 叶片氮含量在ED处理下下降,MD处理下呈升高趋势,而在对照处理下呈平稳趋势. 叶片TNSC、SS及RSS均与土壤含水量呈显著负相关(P < 0.01),而叶淀粉含量、净光合速率和生物量与土壤含水量呈正相关(P < 0.01). 短期干旱对刺槐幼苗叶片TNSC、SS、淀粉、净光合速率和生物量有显著影响(P < 0.01). 因此,刺槐幼苗可能通过将叶片内临时存储的少量淀粉转化成其直接利用的SS的方式,以维持其正常的新陈代谢等生命活动,抵抗短期内的中度和极端干旱事件. (图5 参67 附图2 附表1)
With global climate change, extreme drought, and continuous drought occur more frequently and have a great impact on ecosystems in the middle latitudes. To reveal the effects of drought stress on nitrogen content, rate of photosynthesis, and the metabolism of non-structural carbohydrates in plant leaves, we conducted an experiment using 2-year-old Robinia pseudoacacia seedlings. We analyzed the changes in the dry biomass of the leaf, nitrogen content, net photosynthetic rate, non-structural carbohydrate (NSC), and other components to different drought conditions. The experiment included three treatments: extreme drought (ED), moderate drought (MD) and the control group. The relative water content of the soil was kept at 10%, 30% and 70% of field capacity for each condition, respectively. The results showed that the leaf dry biomass and net photosynthetic rate (Pn) under ED and MD decreased continuously during the 30-day period after water control. Meanwhile, the net photosynthetic rate remained constant and the leaf dry biomass increased gradually under control conditions. The changes in total non-structural carbohydrates (TNSC), soluble sugars (SS), and the ratio of soluble sugars to starch concentration (RSS) were similar in that they all increased at first and then decreased under ED and MD conditions. However, these factors remained constant under the control conditions. The changes in the starch concentration of the leaves were similar to the changes observed in Pn and the leaf dry biomass. Leaf nitrogen content decreased under ED conditions, increased under MD conditions, and showed a stable trend under control treatment. Leaf TNSC, SS, and RSS were negatively correlated with soil water content (P < 0.01), while leaf starch content, net photosynthetic rate, and dry biomass were positively correlated with soil water content (P < 0.01). Our results showed short-term drought had significant effects on TNSC, SS, starch, net photosynthetic rate, and the leaf dry biomass of R. pseudoacacia seedlings (P < 0.01). Therefore, R. pseudoacacia seedlings may resist moderate and extreme drought events over the short term by converting a small amount of stored starch into soluble sugars to maintain their normal rate of metabolism.


1 IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC [M]. Geneva, Switzerland, 2014: 151
2 Assahira C, Piedade MTF, Trumbore SE, Wittmann F, Cintra BBL, Batista ES, de Resende AF, Schongart J. Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam [J]. For Ecol Manage, 2017, 396: 113-123
3 Taylor PG, Cleveland CC, Wieder WR, Sullivan BW, Doughty CE, Dobrowski SZ, Townsend AR. Temperature and rainfall interact to control carbon cycling in tropical forests [J]. Ecol Lett, 2017, 20: 779-788
4 Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism [J]. New Phytol, 2013, 197: 1142-1151
5 潘庆民, 韩兴国, 白永飞, 杨景成. 植物非结构性贮藏碳水化合物的生理生态学研究进展[J]. 植物学通报, 2002, 19 (1): 30-38 [Pan QM, Han XG, Bai YF, Yang JC. Progress in physiology and ecology of non-structural storage of carbohydrates in plants [J]. Botan Bull, 2002, 19 (1): 30-38]
6 Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know [J]. New Phytol, 2016, 211: 386-403
7 Cailleret M, Jansen S, Robert EM, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M, Cada V, Camarero JJ, Cherubini P, Cochard H, Coyea MR, Cufar K, Das AJ, Davi H, Delzon S, Dorman M, Gea-Izquierdo G, Gillner S, Haavik LJ, Hartmann H, Heres AM, Hultine KR, Janda P, Kane JM, Kharuk VI, Kitzberger T, Klein T, Kramer K, Lens F, Levanic T, Linares JC Calderon, Lloret F, Lobo-Do-Vale R, Lombardi F, Lopez Rodriguez R, Makinen H, Mayr S, Meszaros I, Metsaranta JM, Minunno F, Oberhuber W, Papadopoulos A, Peltoniemi M, Petritan AM, Rohner B, Sanguesa-Barreda G, Sarris D, Smith JM, Stan AB, Sterck F, Stojanovic DB, Suarez ML, Svoboda M, Tognetti R, Torres-Ruiz JM, Trotsiuk V, Villalba R, Vodde F, Westwood AR, Wyckoff PH, Zafirov N, Martinez-Vilalta J. A synthesis of radial growth patterns preceding tree mortality [J]. Glob Change Biol, 2017, 23: 1675-1690
8 Wang JS, Li YH, Wang RY, Feng JY, Zhao YX. Preliminary analysis on the demand and review of progress in the field of meteorological drought research [J]. J Arid Meteorol, 2012, 30 (4): 497-508
9 An YY, Liang ZS, Hao WF. Growth and physiological responses of the Periploca sepium Bunge seedlings to drought stress [J]. Acta Ecol Sin, 2011, 31 (3): 716-725
10 Shan CJ, Han RL, Liang ZS. Antioxidant properties of four native grasses in Loess Plateau under drought stress [J]. Acta Ecol Sin, 2012, 32 (4): 1174-1184
11 Lewis SL, Brando PM, Phillips OL, Der Heijden GMFV, Nepstad DC. The 2010 Amazon Drought [J]. Science, 2011, 331: 554-554
12 Kleczewski NM, Herms DA, Bonello P. Nutrient and water availability alter belowground patterns of biomass allocation, carbon partitioning, and ectomycorrhizal abundance in Betula nigra [J]. Trees, 2011, 26: 525-533
13 McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought [J]. New Phytol, 2008, 178: 719-739
14 McDowell NG, Sevanto S. The mechanisms of carbon starvation: how, when, or does it even occur at all [J]. New Phytol, 2010, 186: 264-266
15 McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality [J]. Plant Physiol, 2011, 155: 1051-1059
16 Hoch G, Richter A, K?rner C. Non-structural carbon compounds in temperate forest trees [J]. Plant Cell Environ, 2003, 26 (7): 1067-1081
17 Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R. Nonstructural carbon in woody plants [J]. Annu Rev Plant Biol, 2014, 65: 667-687
18 Dietze MC, Moorcroft PR. Tree mortality in the eastern and central United States: patterns and drivers [J]. Glob Change Biol, 2011, 17: 3312-3326
19 印婧婧, 郭大立, 何思源, 张蕾. 内蒙古半干旱区树木非结构性碳, 氮, 磷的分配格局[J]. 北京大学学报, 2009, 45 (3): 519-527 [Yin JJ, Guo DL, He SY, Zhang L. Distribution pattern of non-structural carbon, nitrogen and phosphorus in trees in semi-arid areas of Inner Mongolia [J]. J Peking Univ, 2009, 45 (3): 519-527]
20 Würth MKR, Pelaez-Riedl S, Wright SJ, K?rner C. Non-structural carbohydrate pools in a tropical forest [J]. Oecologia, 2005, 143 (1): 11-24
21 McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M. The interdependence of mechanisms underlying climate-driven vegetation mortality [J]. Trends Ecol Evol, 2011, 26: 523-532
22 杜尧, 韩轶, 王传宽. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响[J]. 生态学报, 2014, 34 (21): 6090-6100 [Du Y, Han Y, Wang CK. The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii [J]. Acta Ecol Sin, 2014, 34 (21): 6090-6100]
23 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35 (12): 1245-1255 [Yu LM, Wang CK, Wang XC. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China [J]. Chin J Plant Ecol, 2011, 35 (12): 1245-1255]
24 张婷, 曹扬, 陈云明, 刘国彬. 生长季末期干旱胁迫对刺槐幼苗非结构性碳水化合物的影响[J]. 水土保持学报, 2016, 30 (5): 297-304 [Zhang T, Cao Y, Chen YM, Liu GB. Effects of drought stress at the end of growing season on non-structural carbohydrate in Robinia pseudoacacia seedlings [J]. J Soil Water Conserv, 2016, 30 (5): 297-304]
25 李蟠, 孙玉芳, 王三根, 王小丹, 蔡小虎, 朱万泽, Paolo C, Li MH. 贡嘎山地区不同海拔冷杉比叶质量和非结构性碳水化合物含量变化[J]. 应用生态学报, 2008, 19 (1): 8-12 [Li P, Sun YF, Wang SG, Wang XD, Cai XH, Zhu WZ, Paolo C, Li MH. Changes in the quality and non-structural carbohydrate content of fir-specific leaves at different altitudes in the Gongga Mountain area [J]. Chin J Appl Ecol, 2008, 19 (1): 8-12]
26 张海燕, 王传宽, 王兴昌. 温带12个树种新老树枝非结构性碳水化合物浓度比较[J]. 生态学报, 2013, 33 (18): 5675-5685 [Zhang HY, Wang CK, Wang XC. Comparison of non-structural carbohydrate concentrations in new and old twigs of 12 tree species in temperate zone [J]. Acta Ecol Sin, 2013, 33 (18): 5675-5685]
27 郑云普, 王贺新, 娄鑫, 杨庆朋, 徐明. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014, 25 (4): 1188-1196 [Zheng YP, Wang HX, Lou X, Yang QP, Xu Ming. Research progress on non-structural carbohydrates and their influencing factors in woody plants [J]. Chin J Appl Ecol, 2014, 25 (4): 1188-1196]
28 李婷婷, 薛璟祺, 王顺利, 薛玉前, 胡凤荣, 张秀新. 植物非结构性碳水化合物代谢及体内转运研究进展. 植物生理学报[J]. 植物生理学报, 2018, 54 (1): 25-35 [Li TT, Xue JQ, Wang SL, Xue YQ, Hu FR, Zhang XX. Advances in plant non-structural carbohydrate metabolism and in vivo transport [J]. J Plant Physiol , 2018, 54 (1): 25–35]
29 田帅, 刘振坤, 唐明. 不同水分条件下丛枝菌根真菌对刺槐生长和光合特性的影响[J]. 西北林学院学报, 2013, 28 (4): 111-115 [Tian S, Liu ZK, Tang M. Effects of arbuscular mycorrhizal fungi on growth and photosynthetic characteristics of Robinia pseudoacacia under different water conditions [J]. J NW For Univ, 2013, 28 (4): 111-115]
30 Veste M, Kriebitzsch WU. Impact of drought stress on photosynthesis, transpiration and growth of black locust (Robinia pseudoacacia L.) [M]. Forstarchiv, 2013, 84 (2): 35-42
31 Mantovani D, Veste M, and Freese D. Effects of drought frequency on growth performance and transpiration of young black locust (Robinia pseudoacacia L.) [J]. Int J For Res, 2014, 2014: 1-11
32 Adams HD, Zeppel M, Anderegg WRL, Hartmann H, Landh?usser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling D, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA, Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin JM,. Love D, Macalady AK, Martinez-Vilalta J, Mencuccini M, Mitchell PJ, Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FL, Plaut J, Pockman WT, Quirk J, Reinhardt K, Ripullone F, Ryan MG, Sala A, Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Wu C, Yepez EA, McDowell NG. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality [J]. Nat Ecol Evol, 2017, 1: 1285-1291
33 Wang WF, Peng CH, Kneeshaw DD, Larocque GR, Luo ZB. Drought-induced tree mortality: ecological consequences, causes, and modeling [J]. Environ Rev, 2012, 20: 109-121
34 Ryan MG. Tree responses to drought [J]. Tree Physiol, 2011, 31: 237-239
35 Hartmann H, Adams HD, Anderegg WR, Jansen S, Zeppel MJ. Research frontiers in drought-induced tree mortality: crossing scales and disciplines [J]. New Phytol, 2015, 205: 965-969
36 Chaves MM, Oliveira MM. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture [J]. J Exp Bot, 2004, 55: 2365-2384
37 Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine? Tree Physiol, 2012, 32: 764-775
38 张莉, 续九如. 水分胁迫下刺槐不同无性系生理生化反应的研究[J]. 林业科学, 2003, 39 (4): 162-167 [Zhang L, Xu JR. Studies on physiological and biochemical responses of Robinia pseudoacacia clones under water stress [J]. Sci Silv Sin, 2003, 39 (4): 162-167]
39 艾泽民, 陈云明, 曹扬. 黄土丘陵区不同林龄刺槐人工林碳、氮储量及分配格局[J]. 应用生态学报, 2014, 25 (2): 333-341 [Ai ZM, Chen YM, Cao Y. Storage and allocation of carbon and nitrogen in Robinia pseudoacacia plantation at different ages in the loess hilly region, China [J]. J Appl Ecol, 2014, 25 (2): 333-341]
40 Raessler M, Wissuwa B, Breul A, Unger W, Grimm T. Chromatographic analysis of major non-structural carbohydrates in several wood species – an analytical approach for higher accuracy of data [J]. Anal Methods-UK, 2010, 2: 532
41 Fujii N, Akutsu N. A new titration method for sugar determination [J]. J Biochem US, 1937, 25 (2): 237–244
42 林月绪, 张华, 陈如凯. HPLC-RID测定甘蔗茎节蔗糖、葡萄糖和果糖含量[J]. 福建农林大学学报(自然科学版), 2015, 44 (3): 232-235 [Lin YX, Zhang H, Chen RK. HPLC-RID determination of sucrose, glucose and fructose in sugarcane internodes [J]. Fujian Agric For Univ (Nat Sci Ed), 2015, 44 (3): 232-235]
43 Hewitt BR. Spectrophotometric determination of total carbohydrate [J]. Nature, 1958, 182 (4630): 246-247
44 Quentin AG, Rodemann T, Doutreleau MF, Moreau M, Davies NW. Application of near-infrared spectroscopy for estimation of non-structural carbohydrates in foliar samples of Eucalyptus globulus Labilladiere [J]. Tree Physiol, 2017, 37: 131-141
45 Raessler M, Wissuwa B, Breul A. Chromatographic analysis of major non-structural carbohydrates in several wood species - an analytical approach for higher accuracy of data [J]. Anal Methods-UK, 2010, 2 (5): 532-538
46 Li H, Li J, He Y, Li S, Liang Z, Peng C, Polle A, Luo ZB. Changes in carbon, nutrients and stoichiometric relations under different soil depths, plant tissues and ages in black locust plantations [J]. Acta Physiol Plant, 2013, 35: 2951-2964
47 Patakas A, Noitsakis B. Leaf age effects on solute accumulation in water-stressed grapevines. J Plant Physiol, 2001, 158: 63-69
48 Chang CW. Starch depletion and sugars in developing cotton leaves [J]. Plant Physiol, 1980, 65: 844-847
49 Cao Y, Li Y, Chen Y. Non-structural carbon, nitrogen, and phosphorus between black locust and Chinese pine plantations along a precipitation gradient on the Loess Plateau, China [J]. Trees, 2018, 32: 835-846
50 Dynarski KA, Houlton BZ. Nutrient limitation of terrestrial free-living nitrogen fixation [J]. New Phytol, 2018, 217: 1050-1061
51 徐飞, 郭卫华, 徐伟红, 王仁卿. 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J]. 北京林业大学学报. 2010, 24 (1): 1000-1522 [Xu F, Guo WH, Xu WH, Wang RQ. Effects of water stress on morphology, biomass allocation and phot0-p\osynthesis inRobinia pseudoacacia seedlings [J]. J Beijing For Univ, 2010, 24 (1): 1000-1522]
52 Gessler A, Schaub M, McDowell NG. The role of nutrients in drought-induced tree mortality and recovery [J]. New Phytol, 2017, 214: 513-520
53 曹帮华, 张明如, 翟明普, 毛培利.土壤干旱胁迫下刺槐无性系生长和渗透调节能力[J]. 浙江林学院学报, 2005, 22 (2): 161-165 [Cao BH, Zhang MR, Zhai MP, Mao PL. Growth and osmotic regulation ability of Robinia pseudoacacia clones under soil drought stress [J]. J Zhejiang For Univ, 2005, 22 (2): 161-165]
54 文瑛, 廖飞勇. 不同水分胁迫对刺槐生理的影响[J]. 基因组学与应用生物学, 2011, 306: 714-721 [Wen Y, Liao FY. The effect of water stress on the physiology of Robinia pseudoacacia [J]. Genomics Appl Biol, 2011, 30 (6): 714-721]
55 Dickman LT, McDowell NG, Sevanto S, Pangle RE, Pockman WT. Carbohydrate dynamics and mortality in a pi-non-juniper woodland under three future precipitation scenarios [J]. Plant Cell Environ, 2015, 38: 729-739
56 Guicherd P, Peltier JP, Gout E, Bligny R, Marigo G. Osmotic adjustment in Fraxinus excelsior L?.?: malate and mannitol accumulation in leaves under drought conditions [J]. Trees, 1997, 11: 155-161
57 Peltier JP, Marigo D, Marigo G. Involvement of malate and mannitol in the diurnal regulation of the water status in members of Oleaceae [J]. Trees, 1997, 12: 27-34
58 Iannucci A, Russo M, Arena L, Di Fonzo N, Martiniello P. Water deficit effects on osmotic adjustment and solute accumulation in leaves of annual clovers [J]. Eur J Agron, 2002, 16: 111-122
59 Ghaderi N, and Siosemardeh A. Response to drought stress of two strawberry cultivars (cv. Kurdistan and Selva) [J]. Hortic Environ Biotechnol, 2011, 52: 6-12
60 Barnabás B, J?ger K, Fehér A. The effect of drought and heat stress on reproductive processes in cereals [J]. Plant Cell Environ, 2008, 31: 11-38
61 Cuellar-Ortiz SM, De La Paz Arrieta-Montiel M, Acosta-Gallegos J, Covarrubias AA. Relationship between carbohydrate partitioning and drought resistance in common bean [J]. Plant Cell Environ, 2008, 31: 1399-1409
62 Wolfe BT, Sperry JS, Kursar TA. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis [J]. New Phytol, 2016, 212: 1007-1018
63 Rosas T, Galiano L, Ogaya R, Pe-nuelas JJ, Mart?nez-Vilalta J. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought [J]. Front Plant Sci, 2013, 4: 1-16
64 Zeppel MJ, Harrison SP, Adams HD, Kelley DL, Li G, Tissue DT, Dawson TE, Fensham R, Medlyn BE, Palmer A, West AG, McDowell NG. Drought and resprouting plants [J]. New Phytol, 2015, 206: 583-589
65 Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality [J]. New Phytol, 2013, 197: 862-872
66 Klein T, Hoch G, Yakir D, Korner C. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest [J]. Tree Physiol, 2014, 34: 981-992
67 Zhang T, Cao Y, Chen Y, Liu G. Non-structural carbohydrate dynamics in Robinia pseudoacacia saplings under threelevels of continuous drought stress [J]. Trees, 2015, 29: 1837-1849


 WANG Hongmei,BAO Weikai** & LI Fanglan.Physiological and Biochemical Responses of Two-years-old Sophora davidii Seedling Leaves to Different Water Stresses[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):757.[doi:10.3724/SP.J.1145.2008.00757]
 ZHANG Chunmei,ZOU Zhirong,ZHANG Zhixin,et al.Effects of Exogenous Spermidine on Reactive Oxygen Levels and Antioxidative System of Tomato Seedling under Polyethlene Glycol Stress[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):301.[doi:10.3724/SP.J.1145.2009.00301]
 MA Shouchen,XU Bingcheng,LI Fengmin & HUANG Zhanbin.Effect of Root Pruning on Root Efficiency, Water Use and Yield of Winter Wheat[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):606.[doi:10.3724/SP.J.1145.2009.00606]
 YU Menghao,SUN Guchou,ZHAO Ping.Climatic Control of Water Use Efficiency of Acacia mangium Forest Canopy[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):309.[doi:10.3724/SP.J.1145.2010.00309]
 SUN Xia,GAO Xinfen.Effect of Polyethylene Glycol (PEG) Simulated Drought Stress on Seed Germination of Five Species of Indigofera L. from Dry Valleys[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):317.[doi:10.3724/SP.J.1145.2010.00317]
 CAI Haixia,WU Fuzhong,YANG Wanqin.Effect of Simulated Drought Stress on Antioxidant Enzyme System of Four Native Species in the Ecotone Between the Minjiang Dry Valley and Mountain Forest[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):478.[doi:10.3724/SP.J.1145.2010.00478]
 LIU Huifen,WANG Weiwei,CAO Guilin,et al.Effect of Hydrogen on Microbial Population and Enzyme Activity in Robinia pseudoacacia Rhizosphere Soil[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):515.[doi:10.3724/SP.J.1145.2010.00515]
[8]蔺万煌,HOFMANN Rainer W,STILWELL Stephen.干旱胁迫下5种三叶草的生长和生理反应[J].应用与环境生物学报,2011,17(04):580.[doi:10.3724/SP.J.1145.2011.00580]
 LIN Wanhuang,HOFMANN Rainer W,STILWELL Stephen.Growth of Five Species of Trifolium and Their Physiological Responses to Drought Stress[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):580.[doi:10.3724/SP.J.1145.2011.00580]
 SUN Jiliang,LI Liulin,TAO Shutian,et al.Effects of Drought Stress and Rewatering on Physiological Characteristics of Pear Seedling[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):218.[doi:10.3724/SP.J.1145.2012.00218]
 PENG Xiaojue,LIU Rong,YANG Jing,et al.Construction and identification of a mixed cDNA library of rice roots under salt and drought stress using Gateway technology[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):291.[doi:10.3724/SP.J.1145.2014.00291]

更新日期/Last Update: 2019-12-25