|本期目录/Table of Contents|

[1]张乖乖,简敏菲,熊小英,等.模拟水淹条件下乐安河河岸带优势植物丁香蓼生理生化指标的响应[J].应用与环境生物学报,2019,25(05):1084-1090.[doi:10.19675/j.cnki.1006-687x.2019.02038]
 ZHANG Guaiguai,JIAN Minfei,**,et al.Response of physiological and biochemical indices to simulated flooding conditions in Ludwigia prostrata, the dominant plant in the riparian zone of the Le’an River[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1084-1090.[doi:10.19675/j.cnki.1006-687x.2019.02038]
点击复制

模拟水淹条件下乐安河河岸带优势植物丁香蓼生理生化指标的响应
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1084-1090
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Response of physiological and biochemical indices to simulated flooding conditions in Ludwigia prostrata, the dominant plant in the riparian zone of the Le’an River
作者:
张乖乖简敏菲熊小英余厚平倪才英
1江西师范大学生命科学学院,江西省亚热带植物资源保护与利用重点实验室 南昌 330022 2江西师范大学鄱阳湖湿地与流域研究教育部重点实验室 南昌 330022
Author(s):
ZHANG Guaiguai1 JIAN Minfei1 2** XIONG Xiaoying2 YU Houping2 & NI Caiying2
1 College of Life Science, Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Jiangxi Normal University, Nanchang 330022, China 2 Key Laboratory of Poyang Lake Wetland and Watershed Research of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
关键词:
丁香蓼河岸带叶绿素抗逆酶渗透调节物质丙二醛
Keywords:
Ludwigia prostrata riparian zone chlorophyll anti-enzyme activity osmotic regulating substance malondialdehyde (MDA)
分类号:
X173
DOI:
10.19675/j.cnki.1006-687x.2019.02038
摘要:
为探究河岸带植物的耐淹机理其及生存策略,选择乐安河河岸带优势种丁香蓼(Ludwigia prostrata Roxb.)为试验材料,设置全淹(FULL)组、半淹(HALF)组、浸润(INF)组和对照(CK)组等4种不同水分条件进行室内培养,分析不同水淹时间内丁香蓼的叶片叶绿素、抗逆酶活性指标(超氧化物歧化酶SOD、过氧化氢酶CAT、过氧化物酶POD)、渗透调节物质(可溶性蛋白、可溶性糖)和丙二醛(Malondialdehyde,MDA)等生理生化指标的变化. 结果显示,随着水淹强度的增加,丁香蓼植株受胁迫的伤害逐渐增大;水淹处理28 d后,浸润处理丁香蓼依然生长良好,全淹条件下的丁香蓼植株全部死亡. 短时间的浸润处理和半淹处理对丁香蓼叶绿素总量无显著影响,但长时间水淹胁迫下的叶绿素总量均显著低于同期对照组(P<0.05). 水淹胁迫下,丁香蓼叶片的SOD、POD和CAT活性随水淹时间的延长总体呈先升高后下降的趋势,而浸润组的CAT活性呈上升趋势,并在水淹28 d后与对照相比显著(P<0.05)升高41.6%. 水淹处理能显著提高丁香蓼叶片的渗透调节物质的含量与MDA含量,且各指标随着水淹胁迫时间的延长呈先升高后下降趋势;在水淹胁迫21 d后,浸润组的可溶性蛋白、可溶性糖及MDA含量较CK组分别降低52.9%、25.9%及6.5%. 上述研究结果表明丁香蓼能通过增加保护酶活性和渗透调节物质含量以适应水淹环境,是一种具有较强耐淹能力的物种;但高强度、长时间的水淹胁迫仍对其生长造成显著伤害. (图4 表2 参30)
Abstract:
This study explored the waterlogging mechanism and survival strategy of riparian plants under water flooding stress in the typical riparian zone of the Le’an River. The dominant species, Ludwigia prostrata (L. prostrate), was selected as the experimental material and was cultured in the laboratory, using soil pot methods, under four different water flooding intensity stresses, including control (CK), infiltration (INF), half-flooded (HALF), and full submergence (FULL). Changes in the characteristics of chlorophyll; the activity of anti-adversity enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD); and osmotic adjustment substances, including soluble proteins and sugars and malondialdehyde (MDA), were determined in the leaves of L. prostrata. Stress damage of L. prostrata gradually increased with increasing flooding intensity. After flooding for 28 days, L. prostrata plants in the INF group still grew well, but plants in the FULL group died. Total chlorophyll content in the leaves of L. prostrata in the INF and HALF groups had no significant differences in the short period of growth, but their total chlorophyll content was significantly lower than that in the leaves of the control plants (P < 0.05) in the long period of growth. SOD, POD, and CAT activities increased initially, but then decreased, with increasing flooding time in the FULL group. However, CAT activity in the INF group increased significantly by 41.6% (P < 0.05), compared with the control group, after 28 days of flooding.The osmotic-regulating substance and MDA content in L. prostrata leaves significantly increased under the waterlogging treatment; however, these indices increased initially, but then decreased, with increasing flooding time. After 21 days of flooding, soluble protein, soluble sugar, and MDA content decreased by 52.9%, 25.9%, and 6.5%, respectively, compared with the CK group. In summary, L. prostrata is a herbaceous species with strong flood resistance, which is achieved by increasing the activity of protective enzymes and the amount of osmotic regulation substances. However, more intense flooding and longer flooding times may still cause significant damage.

参考文献/References:

1 蔡晓斌, 陈晓玲, 王学雷, 甘文霞. 鄱阳湖水位空间差异及其对湿地水文分析的影响[J]. 华中师范大学学报(自科版), 2011, 45 (1): 139-144 [Cai XB, Chen XL, Wang XL, Gan WX. Spatial difference of water stage and its impact upon wetland hydrological analysis in Poyang Lake [J].J Huazhong Norm Univ (Nat Sci), 2011, 45 (1): 139-144]
2 简敏菲, 徐鹏飞, 余厚平, 熊小英, 李林. 乐安河-鄱阳湖湿地植物群落分布及其环境影响因子[J]. 环境科学研究, 2015, 28 (3): 408-41 [ Jian MF, Xu PF, Yu HP, Xiong XY, Li L. Distribution of the aquatic plant communities and its environmental impacted factors in the wetland between Le’an River and Poyang Lake [J]. Res Environ Sci, 2015, 28 (3): 408-417]
3 Kamal AH, Komatsu S. Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean [J]. J Proteomics, 2016, 133: 33-47
4 Naumann JC, Yong DR, Anderson JE. Leaf chlorophyⅡ fluorescence, reflectance ,and physiological response to flashwater and saltwater flooding in the evergreen shruup, Myriad carefree [J]. Environ Exp Bot, 2008, 63 (3): 402-409
5 Pezeshki SR, Delaune RD. Soil oxidation-reduction in wetlands and its impact on plant functioning [J]. Biology, 2012, 1 (2): 196-221
6 Mortenson SG, Weisberg PJ, Stevens LE. The influence of floods and precipitation on Tamarix establishment in Grand Canyon, Arizona: consequences for flow regime restoration [J]. Biol Invasions, 2012, 14 (5): 1061-1076
7 李娟娟, 许晓妍, 朱文旭, 王晶英. 淹水胁迫对丁香叶绿素含量及荧光特性的影响[J]. 经济林研究, 2012, 30 (2): 43-47 [Li JJ, Xu XY, Zhu WX, Wang JY. Effects of flooding stress on chlorophyll content and fluorescence characeristics in Syringa L. [J]. Econ For Res, 2012, 30 (2): 43-47]
8 Molina-Montenegro MA, Gallardo-Cerda J, Flores TSM, Atala C. The trade-off between cold resistance and growth determines the Nothofagus pumilio treeline [J]. Plant Ecol, 2012, 213 (1): 133-142
9 Jorge LP, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress [J]. Mutat Res, 2009, 674 (1): 137-147
10 Yu B, Zhao CY, Li J, Li JY, Pen G. Morphological, physiological, and biochemical responses of Populus euphratica, to soil flooding [J]. Photosynthetica, 2015, 53 (1): 110-117
11 Parvin D, Karmoker JL. Effects of waterlogging on ion accumulation and sugar, protein and proline contents in Corchorus capsularis L. [J]. Bangladesh J Bot, 2013, 42 (1): 55-63
12 Parad GA, Zarafshar M, Striker GG. Some physiological and morphological responses of Pyrus boissieriana, to flooding [J]. Trees, 2013, 27 (5): 1387-1393
13 Pearson M, Saarinen M, Nummelin L, Heiskanen J, Roitto M, Sarjala T. Tolerance of peat-grown Scots pine seedlings to waterlogging and drought: morphological, physiological, and metabolic responses to stress [J]. For Ecol Manage, 2013, 307 (6): 43-53
14 刘燕德, 施宇, 蔡丽君. 基于近红外漫反射光谱的丁香蓼叶片重金属铜含量快速检测研究[J]. 光谱学与光谱分析, 2012, 32 (12): 3220-3224 [Liu YD, Shi Y, Cai LJ. Fast determination of heavy metal Cu in Ludwigia prostrata leaves using near infrared diffuse spectroscopy [J]. Spectrosc Spectral Anal, 2012, 32 (12): 3220-3224]
15 简敏菲, 张乖乖, 史雅甜,余厚平, 陈奕奇. 土壤镉、铅及其复合污染胁迫丁香蓼(Ludwigia prostrate)的生长及其光合荧光特性的影响[J]. 应用与环境生物学报, 2017, 23 (5): 1135-1142 [Jian MF, Zhang GG, Shi YT, Yu HP, Chen YQ. Effects on the growth and photosynthetic fluorescence characteristics of Ludwigia prostrateunder the pollution stress of cadmium or lead and their combined pollution stress in soil [J]. Chin J Appl Environ Biol, 2017, 23 (5): 1135-1142]
16 Ouyang AG, Jiang LX, Liu YD, Jiang L, Hao Y, He B. Determination of copper and zinc pollutants in Ludwigia prostrata Roxb using near-infrared reflectance spectroscopy (NIRS) [J]. Appl Spectrosc, 2015, 69 (3): 370-376
17 Arnon DI. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris [J]. Plant Physiol, 1949, 24 (1): 1-15
18 徐子棋, 饶良懿, 朱金兆, 赵洋. 水淹胁迫下饲料桑苗的生长及光合响应[J]. 农业工程学报, 2015, 31 (22): 105-114 [Xu ZQ, Rao LY, Zhu JZ, Zhao Y. Growth and photosynthesis characteristics of mulberry under flooding stress [J]. Trans Chin Soc Agric Eng, 2015, 31 (22): 105-114]
19 赵哈林, 曲浩, 赵学勇, 周瑞莲, 云建英, 李瑾. 差巴嘎蒿幼苗对沙埋的生态适应和生理响应[J]. 生态学报, 2014, 34 (20): 5832-5839 [Zhao HL, Qu H, Zhao XY, Zhou RL, Yun JY, Li J. Ecological adaptation and physiological response of Artemisia halodendron seedling to sandburia [J]. Acta Ecol Sin, 2014, 34 (20): 5832-5839]
20 白林利, 韩文娇, 李吕晓. 模拟水淹对水杉苗木生长与生理生化特性影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41 (5): 505-515 [Bai LL, Han WJ, Li LX. Effects of simulated waterlogging on growth, physiological and biochemical characteristics of Metasequoia glyptostroboides seedlings [J]. J Zhejiang Univ (Agric Life Sci), 2015, 41 (5): 505-515]
21 张蜀秋. 植物生理学实验技术教程[M]. 北京: 科学出版社, 2011: 50-201 [Zhang SQ. Plant Physiology Experiment Technology Course [M]. Beijing: Science Press, 2011: 50-201]
22 Ghotbi-Ravandi, AA, Shahbazi M, Shariati M. Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes [J]. J Agron Crop Sci, 2015, 200 (6): 403-415
23 Ashraf M, Arfan M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging [J]. Biol Plant, 2005, 49 (3): 459-462
24 Ou LJ, Dai XZ, Zhang ZQ, Zou XX. Responses of pepper to waterlogging stress [J]. Photosynthetica, 2011, 49 (3):339-345
25 齐艳, 苏丹萍, 李薇, 刘朝玉 崔大方 . 水淹胁迫对窄叶短柱茶生理特征的影响[J]. 亚热带植物科学, 2017, 46 (2): 117-121 [Qi Y, Su DP, Li W, Liu ZY, Cui DF. Effect of water stress on physiological characteristic of Camellia fluviatilis [J]. Subtrop Plant Sci, 2017, 46 (2): 117-121]
26 Yordanova RY, Christov KN, Popova LP. Antioxidative enzymes in barley plants subjected to soil flooding [J]. Environ Exp Bot, 2004, 51 (2): 93-101
27 李兆佳, 熊高明, 邓龙强, 谢宗强, 樊大勇. 狗牙根与牛鞭草在三峡库区消落带水淹结束后的抗氧化酶活力[J]. 生态学报, 2013, 33 (11): 3362-3369 [Li ZJ, Xiong GM, Deng LQ, Xie ZQ, Fan DY. Dynamics of antioxidant enzyme activities in roots of Cynodondactylon and Hemarthria altissima recovering from annual flooding [J]. Acta Ecol Sin, 2013, 33 (11): 3362-3369]
28 谭淑端, 朱明勇, 张克荣, 朱佳文, 魏杲霞, 张全发. 水淹对双穗雀稗抗氧化酶活性及碳水化合物含量的影响[J]. 草业学报, 2013, 22 (1): 217-224 [Tan SD, Zhu MY, Zhang KR, Zhu JW, Wei GX, Zhang QF. Effect of submergence on the antioxidative enzymes and carbohydrate contents of Paspalum distichum [J]. Acta Pratacult Sin, 2013, 22 (1): 217-224]
29 Ferner E, Rennenberg H, Kreuzwieser J. Effect of flooding on Cmetabolosm of flood-tolerant (Qercusrobur) and non-tolerant (Fagussylvatica) tree species [J]. Tree Physiol, 2012, 32 (2): 135-145
30 Kumutha D, Ezhilmathi K, Sairam RK, Srivastava GC, Deshmukh PS, Meena RC. Waterlogging induced oxidative stress and antioxidant activity inpigeonpea genotypes [J]. Biol Plant, 2009, 53 (1): 75-84

相似文献/References:

[1]孔维静,夏会娟,张远,等.辽河保护区及其支流河岸草本植物群落数量分析[J].应用与环境生物学报,2015,21(05):904.[doi:10.3724/SP.J.1145.2015.04016]
 KONG Weijing,XIA Huijuan,ZHANG Yuan,et al.Quantitative analysis of riparian herbaceous community in Liaohe River Conservation Area and its tributaries[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):904.[doi:10.3724/SP.J.1145.2015.04016]
[2]简敏菲,张乖乖,史雅甜,等.土壤镉、铅及其复合污染胁迫对丁香蓼(Ludwigia prostrata)生长和光合荧光特性的影响[J].应用与环境生物学报,2017,23(05):837.[doi:10.3724/SP.J.1145.2017.03030]
 JIAN Minfei**,ZHANG Guaiguai,SHI Yatian,et al.Effects of single and combined pollution stress of cadmium and lead in soil on the growth and photosynthetic fluorescence characteristics of Ludwigia prostrata[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):837.[doi:10.3724/SP.J.1145.2017.03030]
[3]张乖乖 简敏菲** 熊小英 余厚平 倪才英.模拟水淹条件下乐安河河岸带优势植物丁香蓼生理生化指标的响应*[J].应用与环境生物学报,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2019.02038]
 ZHANG Guaiguai,JIAN Minfei,**,et al.Effects on the Physiological and Biochemical Indices of the Dominatn Plant Ludwigia prostrata in the Riparian Zone of the Le’an River under the Simulated water flooding conditions[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1.[doi:10.19675/j.cnki.1006-687x.2019.02038]

更新日期/Last Update: 2019-10-25