|本期目录/Table of Contents|

[1]魏圣钊,李林,骆晓,等.不同连栽代次的巨桉(Eucalyptus grandis)人工林土壤酶活性及其与土壤理化性质的关系[J].应用与环境生物学报,2019,25(06):1312-1318.[doi:10.19675/j.cnki.1006-687x.2019.02029]
 WEI Shengzhao,LI Lin,LUO Xiao,et al.Soil enzyme activities and their relationships to soil physicochemical properties in different successive rotation plantations of Eucalyptus grandis[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1312-1318.[doi:10.19675/j.cnki.1006-687x.2019.02029]
点击复制

不同连栽代次的巨桉(Eucalyptus grandis)人工林土壤酶活性及其与土壤理化性质的关系
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1312-1318
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Soil enzyme activities and their relationships to soil physicochemical properties in different successive rotation plantations of Eucalyptus grandis
作者:
魏圣钊李林骆晓谭靖星刘雄刘行杨帅曹芹黄从德
1 四川农业大学林学院 成都 611130 2 四川省林业勘察设计研究院 成都 610000
Author(s):
WEI Shengzhao1 LI Lin1 2 LUO Xiao1 2 TAN Jingxin1 2 LIU Xiong1 LIU Xing1 YANG Shuai1 CAO Qin1 & HUANG Congde1**
1 College of Forestry, Sichuan Agricultural University, Chengdu 611130, China 2 Sichuan Forestry Investigation and Design Institute, Chengdu 610000, China
关键词:
巨桉人工林连栽土壤酶活性土壤理化性质冗余分析相对重要性分析
Keywords:
Eucalyptus grandis plantation successive rotation soil enzyme activity redundancy analysis relative importance analysis
分类号:
S714.3
DOI:
10.19675/j.cnki.1006-687x.2019.02029
摘要:
土壤酶是评价土壤环境质量的指示指标. 土壤理化性质决定了酶促反应的底物和环境,研究不同连栽代次的巨桉人工林土壤酶活性与土壤理化性质的关系,对于巨桉人工林系统的可持续经营具有重要作用. 2016年7月,采用时空互换法,以四川省青神县第一、二和三代巨桉(Eucalyptus grandis)人工林和对照马尾松(Pinus massoniana)林为研究对象,研究了不同连栽代次的巨桉人工林土壤酶活性及其与土壤理化性质的关系. 结果表明:与马尾松林相比,一代巨桉林土壤脲酶、多酚氧化酶和过氧化氢酶活性显著增加,蔗糖酶、酸性磷酸酶和过氧化物酶活性无显著变化. 但随巨桉连栽代次增加,土壤蔗糖酶、脲酶、酸性磷酸酶、多酚氧化酶、过氧化氢酶和过氧化物酶活性递减. 冗余分析表明,土壤容重、pH、有机质、全磷对不同代次的巨桉人工林土壤酶活性影响显著,其中全磷是土壤酶活性最重要的影响因素,能解释酶活性变异的60%. 全氮对土壤酶的整体影响不显著,仅能解释土壤酶活性变异的20.5%. 但相对重要性分析进一步表明,土壤全氮对脲酶和多酚氧化酶存在显著的影响. 研究结果说明巨桉连栽通过影响土壤理化性质进而改变了土壤酶活性. (图3 表6 参35)
Abstract:
Soil enzymes are indicators for evaluating soil environmental quality. Soil physicochemical properties determine the substrate and environment for enzymatic reactions. Studying the relationship between soil enzyme activities and soil physicochemical properties in different successive rotation plantations of Eucalyptus grandis is very important for sustainable management of these plantations. In July 2016, we chose the first, second, and third rotation plantations of E. grandis and Pinus massoniana in Qingshen County, Sichuan Province, as study areas. Soil enzyme activities and their relationships with soil physicochemical properties in different successive rotation plantations of E. grandis were studied using the space-time interchange method. The results showed that compared with the P. massoniana forests, the activities of urease, polyphenol oxidase, and catalase in the first rotation plantations of E. grandis were significantly higher, although the activities of invertase, acid phosphatase, and peroxidase did not differ significantly. However, with the increasing continuous planting of E. grandis, the activities of soil invertase, urease, acid phosphatase, polyphenol oxidase, catalase, and peroxidase decreased. Redundancy analysis showed that soil bulk density, pH, organic matter, and total phosphorus significantly affected soil enzyme activities in different successive rotation plantations of E. grandis. Soil total phosphorus was the most important factor affecting soil enzyme activity, which could explain 60% of the variation in soil enzyme activity. Total nitrogen did not have a significant effect on the soil enzymes, and only 20.5% of the variation of soil enzymes activity could be explained by the redundancy analysis, although the relative importance analysis showed that soil total nitrogen had a significant effect on the activities of urease and polyphenol oxidase in E. grandis plantations. These results indicated that soil physicochemical properties could play an important role in continuous cropping processes in E. grandis plantations by regulating soil enzyme activity.

参考文献/References:

1. Lin Z, Li Q, Yin Q, Wang J, Zhang B, Gan S, Wu AM. Identification of novel miRNAs and their target genes in Eucalyptus grandis [J]. Tree Genet Genomes, 2018, 14 (4): 60
2. 赵燕波, 纪托未, 张丹桔, 张健. 3个树种与巨桉混交土壤理化性质、凋落物量和养分含量特征[J]. 应用与环境生物学报, 2015, 21 (5): 948-953 [Zhao YB, Ji WT, Zhang DJ, Zhang J. Soil physi-chemical properties, biomass and nutrient contents of forest litter in mixed plantations of Eucalyptus grandis and three tree species [J]. Chin J Appl Environ Biol, 2015, 21 (5): 948-953]
3. 潘嘉雯, 林娜, 何茜, 苏艳, 李吉跃. 我国3个桉树人工林种植区生产力影响因素[J]. 生态学报, 38 (19): 6932-6940 [Pan JW, Lin N, He Q, Su Y, Li JY. Factors influencing the productivity of three Eucalyptus plantation areas in China [J]. Acta Ecol Sin, 2018, 38 (19): 6932-6940]
4. Lemenih M, Olsson M, Karltun E. Comparison of soil attributes under Cupressus lusitanica and Eucalyptus saligna established on abandoned farmlands with continuously cropped farmlands and natural forest in Ethiopia [J]. For Ecol Manag, 2004, 195 (1-2): 57-67
5. 袁颖红, 樊后保, 吴建平, 刘文飞, 胡良, 廖迎春, 张文锋, 蔡乾坤. 不同年龄人工林尾巨桉 (Eucalyptus urophylla × E.grandis)叶片光合特性及水分利用效率[J]. 应用与环境生物学报, 2016 (1): 58-63 [Yuan YH, Fan HB, Wu JP, Liu WF, Hu L, Liao YC, Zhang WF, Cai QK. The photosynthesis characteristics and water use effi ciency of Eucalyptus urophylla × E. grandis plantations of different ages [J]. Chin J Appl Environ Biol, 2016 (1): 58-63]
6. Bengtson P, Bengtsson G. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures [J]. Ecol Lett, 2007, 10 (9): 783-790
7. Gong S, Zhang T, Guo R, Cao H, Shi L, Guo J, Sun W. Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe [J]. Soil Res, 2015, 53: 242-252
8. Paz-Ferreiro J, Fu S, Méndez A, Gascó G. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities [J]. J Soil Sediment, 2014, 14 (3): 483-494
9. Zhang K, Zheng H, Chen FL, Ouyang ZY, Wang Y, Wu YF, Lan J, Fu M, Xiang XW. Changes in soil quality after converting Pinus to Eucalyptus plantations in southern China [J]. Solid Earth, 2015, 6 (1): 115-123
10. Chen F, Zheng H, Zhang K, Ouyang Z, Li H, Wu B, Shi Q. Soil microbial community structure and function responses to successive planting of Eucalyptus [J]. J Environ Sci (China), 2013, 25 (10): 2102-2111
11. 杨远彪, 吕成群, 黄宝灵, 孙成毅, 方丽英. 连栽桉树人工林土壤微生物和酶活性的分析[J]. 东北林业大学学报, 2008, 36 (12):10-12 [Yang YB, Lu CQ, Huang BL; Sun CY. Soil microbes and enzymes in eucalyptus plantations under different rotations of continuously planting [J]. J North For Univ, 2008, 36 (12): 10-12]
12. 何朋俊, 李星月, 王谢, 苏宇, 李贤伟, 余波, 潘宗英. 川中丘陵柏木低效林开窗补阔初期土壤养分和酶活性变化[J]. 应用与环境生物学报, 2017, 23 (4) :101-108 [He PJ, Li XY, Wang X, Su Y, Li XW, Yu B, Pan QY. Soil nutrient and enzymatic activity changes amidst the early stage of gap and mixed transformation of low-efficiency Cupressus funebris in the hilly area of the Central Sichuan Basin [J]. Chin J Appl Environ Biol, 2017, 23 (4): 101-108]
13. Allison SD. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments [J]. Ecol Lett, 2005, 8 (6): 626-635
14. Li X, Ye D, Liang H, Zhu HG, Qin L, Zhu YL, Wen YG. Effects of successive rotation regimes on carbon stocks in Eucalyptus plantations in subtropical china measured over a full rotation [J]. PLoS ONE, 2015, 10 (7): e0132858
15. 吕小燕, 何斌, 吴永富, 兰俊, 滕秋梅. 连栽桉树人工林土壤有机碳氮储量及其分布特征[J]. 热带作物学报, 2017 (10):111-117 [Lu XY, He B, Wu YF, Lan J, Teng QM. The soil organic carbon and nitrogen storage and the evolution characteristics of Eucalyptus P lantations under successive rotation [J]. Chin J Trop Crops, 2017 (10): 111-117]
16. 骆晓, 宋骞, 张伟华, 王苏宇, 黄从德. 青神县巨桉连栽对林木生长的影响研究[J]. 四川林勘设计, 2016 (4): 31-34. [Luo X, Song G, Zhang WH. The effect of Eucalyptus grandis continuous planting on the growth of trees in Qingshen County [J]. Sichuan For Expl Des, 2016 (4): 31-34]
17. 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978: 62-191 [Institute of soil science, Chinese academy of sciences. Soil Physicochemical Analysis [M]. Shanghai: Shanghai scientific & technical publishers, 1978: 62-191]
18. 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 274-320 [Guan SY. Soil Enzymes and Their Research Methods [M]. Beijing: China Agriculture Press, 1986: 274-320]
19. By Jan Lep?. Multivariate Analysis of Ecological Data Using CANOCO 5 [M]. Cambridge : Cambridge University Press, 2003: 256-267
20. 赵汝东, 樊剑波, 何园球, 宋春丽, 屠人凤, 谭炳昌. 退化马尾松林下土壤障碍因子分析及酶活性研究[J]. 土壤学报, 2011, 48 (6): 1287-1292 [Zhao RD, Fan JB, He YQ, Song CL, Tu RF, Tan BC. Research on soil enzyme activities and limiting factors for restoration of degraded pinus massoniana plantation Acta [J]. Pedol Sin, 2011, 48 (6): 1287-1292]
21. Feng S, Zeng W, Luo F, Zhao J, Yang Z, Sun Q. Antibacterial activity of organic acids in aqueous extracts from pine needles ( Pinus massoniana, Lamb.) [J]. Food Sci Biotechnol, 2010, 19 (1): 35-41
22. 郭朝晖, 廖柏寒, 黄昌勇. 模拟酸雨下Cd、Cu、Zn复合污染对土壤微生物量碳和酶活性的影响[J]. 应用与环境生物学报, 2003, 9 (4):382-385 [Guo CH, Liao BH, Huang CY. Application of canonical correlation analysis in the relation between soil enzyme activities and nutrient elements in eucalyptus plantation soils [J]. Chin J Appl Environ Biol, 2003, 9 (4): 382-385]
23. 杨钙仁, 张秀清, 蔡德所,石贤辉, 张华, 黄承标. 广西主要人工林凋落物分解过程及其对淋溶水质的影响[J]. 应用生态学报, 2012, 23 (1):9-16 [Yang GR,Zhang XQ,Cai DS,Shi XH,Zhang H, Huang CB. Litter decomposition of dominant plantations in Guangxi and its effects on leachate quality [J]. Chin J Appl Ecol, 2012, 23 (1): 9-16]
24. 黄香兰, 叶龙华, 薛立, 卢广超. 华南地区3种典型人工林的土壤特性研究[J]. 安徽农业大学学报, 2014, 41 (2): 198-202 [Huang XL, Ye LH, Xue L, Lu GC. Soil properties of three typical plantations in South China [J]. J Anhui Agric Univ, 2014, 41 (2): 198-202]
25. 樊后保, 刘文飞, 徐雷, 胥鲁平, 孟庆银. 杉木人工林土壤酶活性对氮沉降的响应[J]. 林业科学, 2012, 48 (7): 8-13 [Fan HB, Liu WF, Xu L, Xu LP, Meng QY. Impacts of nitrogen deposition on soil enzyme activities in a chinese fir plantation [J]. Sci Silv Sin, 2012, 48 (7): 8-13]
26. Prieto L, Bertiller MB, Carrera AL, Olivera NL. Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina [J]. Geoderma, 2011, 162 (3): 281-287
27. Tischer A, Blagodatskaya E, Hamer U. Extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador affected by low soil P status and land-use change [J]. Appl Soil Ecol, 2014, 74 (2): 1-11
28. 李林. 青神县巨桉连栽对土壤微生物和酶活性的影响[D]. 成都: 四川农业大学, 2018 [Li Lin. Effects of macroeucalyptus on soil microorganism and enzyme activity in Qingshen County [D]. Chengdu: Sichuan Agricultural University, 2018]
29. Zantua MI, Dumenil LC, Bremner JM. Relationships between soil urease activity and other soil properties1 [J]. Soil Sci, 1977, 41 (2): 350-352
30. 李跃林, 李志辉, 彭少麟, 任海, 朱日光, 李志安. 典范相关分析在桉树人工林地土壤酶活性与营养元素关系研究中的应用[J]. 应用与环境生物学报, 2002, 8 (5):544-549 [Li YL, Li ZH, Peng SL, Ren H, Zhu RG, Li ZA. Application of canonical correlation analysis in the relation between soil enzyme activities and nutrient elements in eucalyptus plantation soils [J]. Chin J Appl Environ Biol, 2002, 8 (5): 544-549]
31. 徐华勤, 章家恩, 冯丽芳, 全国明, 胡蓉蓉, 毛丹娟. 广东省典型土壤类型和土地利用方式对土壤酶活性的影响[J]. 植物营养与肥料学报, 2010, 16 (6): 1464-1471 [Xu HQ, Zhang JE, Feng LF, Quan GM, Hu RR, Mao DJ. Effects of typical soil types and land use patterns on soil enzyme activities in Guangdong Province [J]. Plant Nutr Fertil Sci, 2010, 16 (6): 1464-1471]
32. 刘红英. 连栽桉树人工林土壤酶活性及其与土壤养分的关系[D]. 南宁: 广西大学, 2013 [Liu HY. The relationship of soil enzyme activities between soil nutrients in a long-term continuous planting Eucalyptus plantation [D]. Nanning: Guangxi University, 2013]
33. Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH. Stoichiometry of soil enzyme activity at global scale [J]. Ecol Lett, 2008, 11 (11): 1252-1264
34. Ai C, Liang G, Sun J, He P, Tang S, Yang S, Zhou W, Wang X. The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition [J]. Biol Fert Soils, 2015, 51 (4): 465-477
35. Qin Y, Niu D, Kang J, Zhou Y, Li X. Effects of livestock exclusion on soil physical and biochemical properties of a desert rangeland [J]. Pol J Environ Stud, 2015, 24 (6): 2587-2595
36.

相似文献/References:

[1]肖玖金,张健,黄玉梅,等.采伐干扰前后巨桉人工林土壤动物群落比较[J].应用与环境生物学报,2011,17(01):73.[doi:10.3724/SP.J.1145.2011.00073]
 XIAO Jiujin,ZHANG Jian,HUANG Yumei,et al.Variation of Soil Fauna Community in Eucalyptus grandis Plantation Before and After Felling Disturbance[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):73.[doi:10.3724/SP.J.1145.2011.00073]
[2]魏晓骁 陈爱玲 王士亚 曹光球** 蔡培菁 黎 舒.杉木连栽林土壤微生物碳源利用比较?[J].应用与环境生物学报,2016,22(03):518.[doi:10.3724/SP.J.1145.2015.09010]
 WEI Xiaoxiao,CHEN Ailing,WANG Shiya,et al.A comparative study of soil microbial carbon source utilization in different successive rotation plantations of Chinese fir*[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):518.[doi:10.3724/SP.J.1145.2015.09010]

更新日期/Last Update: 2019-12-25