|本期目录/Table of Contents|

[1]柳检,罗立强.植物对矿物的风化作用机制研究进展[J].应用与环境生物学报,2019,25(06):1503-1511.[doi:10.19675/j.cnki.1006-687x.2019.02026]
 LIU Jian & LUO Liqiang**.Advances in research on the mechanisms of plant-driven mineral weathering[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1503-1511.[doi:10.19675/j.cnki.1006-687x.2019.02026]
点击复制

植物对矿物的风化作用机制研究进展
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1503-1511
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Advances in research on the mechanisms of plant-driven mineral weathering
作者:
柳检罗立强
国家地质实验测试中心 北京 100037
Author(s):
LIU Jian & LUO Liqiang**
National Research Center of Geoanalysis, Beijing 100037, China
关键词:
植物矿物风化根系分泌物植物共生菌根元素释放吸收土壤/矿物-根界面
Keywords:
plant mineral weathering root exudate symbiosis mycorrhizas release of elements uptake soil/mineral root interface
分类号:
X173
DOI:
10.19675/j.cnki.1006-687x.2019.02026
摘要:
矿物风化可为植物生长提供必需的营养矿物质,但也是毒性元素的主要来源之一. 研究植物作用下的矿物风化过程,探索环境中元素的来源、分布和迁移转化规律,有助于深入认识植物和矿物的相互作用机制,为开展有益、有害元素的植物吸收与调控策略的研究提供科学依据. 对国内外在植物与矿物风化研究领域的现状与进展进行分析和评述,发现:(1)根系分泌物的根际作用、植物对风化产物的吸收作用和植物共生菌根的辅助作用是植物驱动矿物风化的3种重要途径;(2)植物根系分泌物可通过H+酸解、有机酸络合、植物铁载体螯合和氧化还原等4种作用机制,协同促进矿物表面风化;(3)根际有机酸中羧基、羟基的结构特征及其与金属离子的配位关系是有机酸控制矿物风化的关键因素. 认为从分子和时空四维尺度,探索土壤/矿物与根系界面中有机配体和金属的相互作用机制及元素的形态转化过程,是该领域的未来发展方向. (图4 表1 参86)
Abstract:
Mineral weathering can provide essential mineral nutrients that are necessary for plant growth, but it is also one of the main sources of toxic elements. Studying the plant-induced mineral weathering process and exploring the source, distribution, translocation, and transformation of elements in the environment is important for identifying mechanisms of interaction between plants and minerals. These studies can also provide a scientific basis for the studying mechanisms that regulate the uptake of beneficial and harmful elements by plants. In this paper, we examine the status of and advances in research on the relationships between plants and mineral weathering. The following findings were identified: (1) the rhizosphere effect of root exudates, absorption effects of roots, and auxiliary effects of symbiotic mycorrhizas are the main pathways for plant-driven mineral weathering; (2) the acidolysis of H+, complexation of organic acids, chelation of phytosiderophores, and reaction of oxidoreduction are the main mechanisms through which plant root exudates promote mineral weathering; (3) the key factors affecting the process of organic acid-induced mineral weathering include the structures of carboxyl groups and hydroxyl groups in organic acids and their interactions with metal ions. We concluded that exploring the interaction mechanisms between organic ligands and metals and the transformation of elemental speciation at the soil/mineral?root interface at the molecular, spatial, and temporal four-dimensional scales will be crucial for future studies.

参考文献/References:

1. Uroz S, Oger P, Lepleux C, Collignon C, Frey-Klett P, Turpault MP. Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems [J]. Res Microbiol, 2011, 162 (9): 820-831
2. Zhao FJ, Moore KL, Lombi E, Zhu YG. Imaging element distribution and speciation in plant cells [J]. Trends Plant Sci, 2014, 19 (3): 183-192
3. Shaul O. Magnesium transport and function in plants: the tip of the iceberg [J]. Biometals, 2002, 15 (3): 307-321
4. Liang K, Zhang Q, Gu M, Cong W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. [J]. J Appl Phycol, 2013, 25 (1): 311-318
5. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants [J]. New Phytol, 2007, 173 (4): 677-702
6. Basu A, Schreiber ME. Arsenic release from arsenopyrite weathering: Insights from sequential extraction and microscopic studies [J]. J Hazard Mater, 2013, 262 (8): 896-904
7. Zhu C, Wen H, Zhang Y, Yin R, Cloquet C. Cd isotope fractionation during sulfide mineral weathering in the Fule Zn-Pb-Cd deposit, Yunnan Province, Southwest China [J]. Sci Total Environ, 2018, 616: 64-72
8. Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants [J]. Int J Environ Sci Technol, 2019, 16 (3): 1807-1828
9. Han YH, Liu X, Rathinasabapathi B, Li HB, Chen Y, Ma LQ. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata [J]. Environ Pollut, 2017, 227: 569-577
10. Sharma P, Dubey RS. Lead toxicity in plants [J]. Braz J Plant Physiol, 2005, 17 (1): 35-52
11. 陈杰, 许长征, 曹颖倩, 李菁, 罗锋, 雷波. 不同重金属对拟南芥根系特征的影响比较[J]. 应用与环境生物学报, 2017, 23 (6): 1122-1128 [Chen J, Xu CZ, Cao YQ, Li J, Luo F, Lei B. Heavy-metal-induced morphological changes of root characteristics in Arabidopsis thaliana [J]. Chin J Appl Environ Biol, 2017, 23 (6): 1122-1128]
12. Houben D, Sonnet P. Zinc mineral weathering as affected by plant roots [J]. Appl Geochem, 2012, 27 (8): 1587-1592
13. Salehi MH, Tahamtani L. Magnesium uptake and palygorskite transformation abilities of wheat and oat [J]. Pedosphere, 2012, 22 (6): 834-841
14. Calvaruso C, Turpault MP, Frey-Klett P, Uroz S, Pierret MC, Tosheva Z, Kies A. Increase of apatite dissolution rate by Scots pine roots associated or not with Burkholderia glathei PML1(12)Rp in open-system flow microcosms [J]. Geochim Cosmochim Acta, 2013, 106 (4): 287-306
15. Abbaspour A, Arocena JM. Evaluation of chloropyromorphite stability in the rhizosphere of Brassica juncea and Medicago sativa in a sand culture [J]. J Environ Qual, 2012, 41 (5): 1525-1530
16. Liu X, Fu JW, Silva ED, Shi XX, Cao Y, Rathinasabapathi B, Chen Y, Ma LQ. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata [J]. Environ Pollut, 2017, 223: 230-237
17. Hao J, Sverjensky DA, Hazen RM. A model for late Archean chemical weathering and world average river water [J]. Earth Planet Sci Lett, 2017, 457: 191-203
18. Sobanska S, Deneele D, Barbillat J, Ledésert B. Natural weathering of slags from primary Pb–Zn smelting as evidenced by Raman microspectroscopy [J]. Appl Geochem, 2016, 64: 107-117
19. Luo LQ, Chu BB, Liu Y, Wang XF, Xu T, Bo Y. Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine [J]. Environ Sci Pollut Res, 2014, 21 (13): 8242-8260
20. Root RA, Hayes SM, Hammond CM, Maier RM, Chorover J. Toxic metal (loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate [J]. Appl Geochem, 2015, 62: 131-149
21. Arrieta N, Iturregui A, Martínez-Arkarazo I, Murelaga X, Baceta JI, de Diego A, Olazabal M?, Madariaga JM. Characterization of ferruginous cements related with weathering of slag in a temperate anthropogenic beachrock [J]. Sci Total Environ, 2017, 581: 49-65
22. Colombo C, Palumbo G, He JZ, Pinton R, Cesco S. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes [J]. J Soils Sediments, 2014, 14 (3): 538-548
23. Kim EJ, Yoo JC, Baek K. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation [J]. Environ Pollut, 2014, 186: 29-35
24. Zhang C, Ying G, Yao H, Xiao C, Hu M. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review [J]. Front Environ Sci Eng, 2012, 6 (4): 509-517
25. Shi Z, Krom MD, Jickells TD, Bonneville S, Carslaw KS, Mihalopoulos N, Baker AR, Benning LG. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review [J]. Aeolian Res, 2012, 5 (6): 21-42
26. Meunier L, Walker SR, Wragg J, Parsons MB, Koch I, Jamieson HE, Reimer KJ. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of nova scotia [J]. Environ Sci Technol, 2010, 44 (7): 2667-2674
27. Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M, Mosby E, Casteel SW, Berti W, Carpenter M, Edwards D, Cragin D, Chappell W. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment [J]. Environ Sci Technol, 1999, 33 (21): 3697-3705
28. Violante A, Caporale AG. Biogeochemical processes at soil-root interface [J]. J Soil Sci Plant Nutr, 2015, 15 (2): 422-448
29. Pawlik ?, Phillips JD, ?amonil P. Roots, rock, and regolith: Biomechanical and biochemical weathering by trees and its impact on hillslopes—A critical literature review [J]. Earth Sci Rev, 2016, 159: 142-159
30. Hinsinger P, Barros ONF, Benedetti MF, Noack Y, Callot G. Plant-induced weathering of a basaltic rock: experimental evidence [J]. Geochim Cosmochim Acta, 2001, 65 (1): 137-152
31. Pawlik ?, ?amonil P. Biomechanical and biochemical effects recorded in the tree root zone–soil memory, historical contingency and soil evolution under trees [J]. Plant Soil, 2018, 426 (2): 1-26
32. 朱永官, 段桂兰, 陈保冬, 彭新华, 陈正, 孙国新. 土壤-微生物-植物系统中矿物风化与元素循环[J]. 中国科学: 地球科学, 2014, 1 (6): 1107-1116 [Zhu YG, Duan GL, Chen BD, Pen XH, Cheng Z, Sun LG. Mineral weathering and element cycling in soil-microorganism-plant system [J]. Sci China Earth Sci, 1 (6): 1107-1116]
33. Luo Q, Wang S, Sun LN, Wang H. Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS [J]. Sci Rep, 2017, 7: 39878
34. Bajda T. Dissolution of mimetite Pb5 (AsO4)3Cl in low-molecular-weight organic acids and EDTA [J]. Chemosphere, 2011, 83 (11): 1493-1501
35. Fan JX, Wang YJ, Liu C, Wang LH, Yang K, Zhou DM, Li W, Sparks DL. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: new insights from x-ray photoelectron and X-ray absorption spectroscopy [J]. J Hazard Mater, 2014, 279: 212-219
36. Zuo S, Yang J, Huang L, Rossiter DG, Zhang G. Assessment of plant-driven mineral weathering in an aggrading forested watershed in subtropical China [J]. Pedosphere, 2016, 26 (6): 817-828
37. 江长胜, 杨剑虹, 魏朝富, 谢德体, 屈明. 低分子量有机酸对紫色母岩中钾释放的影响[J]. 植物营养与肥料学报, 2002, 8 (4): 441-446 [Jiang CS, Yang JH, Wei CF, Xie DT, Qu M. Effect of low-molecular-weight organic acids on potassium release from purple rocks [J]. Plant Nutr Fert Sci, 2002, 8 (4): 441-446]
38. Khayamim F, Khademi H, Sabzalian MR. Effect of Neotyphodium endophyte-tall fescue symbiosis on mineralogical changes in clay-sized phlogopite and muscovite [J]. Plant Soil, 2011, 341 (1): 473-484
39. Chen J, Shafi M, Wang Y, Wu J, Ye Z, Liu C, Zhong B, Guo H, He L, Liu D. Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals [J]. Environ Sci Pollut Res, 2016, 23 (20): 20977-20984
40. Lawrence C, Harden J, Maher K. Modeling the influence of organic acids on soil weathering [J]. Geochim Cosmochim Acta, 2014, 139 (1-3): 487-507
41. Liu Q, Li H, Jin G, Zheng K, Wang L. Assessing the influence of humic acids on the weathering of galena and its environmental implications [J]. Ecotoxicol Environ Saf, 2018, 158: 230-238
42. Wan D, Zhang N, Chen W, Cai P, Zheng L, Huang Q. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil [J]. Environ Sci Pollut Res, 2018, 25 (32): 32130-32139
43. Sanderson P, Naidu R, Bolan N. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils [J]. J Environ Manage, 2016, 170: 123-130
44. Zhao J, Chu G, Pan B, Zhou Y, Wu M, Liu Y, Duan W, Lang D, Zhao Q, Xing B. Homo-conjugation of low molecular weight organic acids competes with their complexation with Cu (II) [J]. Environ Sci Technol, 2018, 52 (9): 5173-5181
45. Orsetti S, Marco-Brown JL, Andrade EM, Molina FV. Pb (II) binding to humic substances: an equilibrium and spectroscopic study [J]. Environ Sci Technol, 2013, 47 (15): 8325-8333
46. Usiyama T, Fukushi K. Predictive model for Pb (II) adsorption on soil minerals (oxides and low-crystalline aluminum silicate) consistent with spectroscopic evidence [J]. Geochim Cosmochim Acta, 2016, 190: 134-155
47. Xiong J, Weng L, Koopal LK, Wang M, Shi Z, Zheng L, Tan W. Effect of soil fulvic and humic acids on Pb binding to the goethite/solution interface: ligand charge distribution modeling and speciation distribution of Pb [J]. Environ Sci Technol, 2018, 52 (3): 1348-1356
48. Tsai HH, Schmidt W. Mobilization of iron by plant-borne coumarins [J]. Trends Plant Sci, 2017, 22 (6): 538-548
49. Oburger E, Gruber B, Schindlegger Y, Schenkeveld WDC, Hann S, Kraemer SM, Wenzel WW, Puschenreiter M. Root exudation of phytosiderophores from soil-grown wheat [J]. New Phytol, 2014, 203 (4): 1161-1174
50. Mimmo T, Buono DD, Terzano R, Tomasi N, Vigani G, Crecchio C, Pinton R, Zocchi G, Cesco S. Rhizospheric organic compounds in the soil-microorganism-plant system: their role in iron availability [J]. Eur J Soil Sci, 2015, 65 (5): 629-642
51. Ahmed E, Holmstr SJM. Siderophores in environmental research: roles and applications [J]. Microb Biotechnol, 2014, 7 (3): 196-208
52. Reichard PU, Kretzschmar R, Kraemer SM. Dissolution mechanisms of goethite in the presence of siderophores and organic acids [J]. Geochim Cosmochim Acta, 2007, 71 (23): 5635-5650
53. Grillet L, Schmidt W. The multiple facets of root iron reduction [J]. J Exp Bot, 2017, 68 (18): 5021-5027
54. Shirley M, Avoscan L, Bernaud E, Vansuyt G, Lemanceau P. Comparison of iron acquisition from Fe-pyoverdine by strategy I and strategy II plants [J]. Botany, 2011, 89 (10): 731-735
55. Adeleke RA, Cloete TE, Bertrand A, Khasa DP. Iron ore weathering potentials of ectomycorrhizal plants [J]. Mycorrhiza, 2012, 22 (7): 535-544
56. Jain A, Wilson G, Connolly E. The diverse roles of FRO family metalloreductases in iron and copper homeostasis [J]. Front Plant Sci, 2014, 5: 100
57. Terraza PS, Rios JJ, Abadía J, Abadía A, Ana AF. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms [J]. New Phytol, 2016, 209 (2): 733-745
58. Connorton JM, Balk J. Iron homeostasis in plants-a brief overview [J]. Metallomics, 2017, 9 (7): 813-823
59. Huguet S, Isaure MP, Bert V, Laboudigue A, Proux O, Flank AM, Vantelon D, Sarret G. Fate of cadmium in the rhizosphere of Arabidopsis halleri grown in a contaminated dredged sediment [J]. Sci Total Environ, 2015, 536: 468-480
60. Hammond CM, Root RA, Maier RM, Chorover J. Mechanisms of arsenic sequestration by Prosopis juliflora during the phytostabilization of metalliferous mine tailings [J]. Environ Sci Technol, 2018, 52 (3): 1156-1164
61. Darunsontaya T, Suddhiprakarn A, Kheoruenromne I, Prakongkep N, Gilkes RJ. The forms and availability to plants of soil potassium as related to mineralogy for upland oxisols and ultisols from Thailand [J]. Geoderma, 2012, 170 (3): 11-24
62. Khormali F, Rezaei F, Rahimzadeh N, Hosseinifard SJ, Dordipour E. Rhizosphere-induced weathering of minerals in loess-derived soils of Golestan Province, Iran [J]. Geoderma Reg, 2015, 5: 34-43
63. Chardot-Jacques V, Calvaruso C, Simon B, Turpault MP, Echevarria G, Morel JL. Chrysotile dissolution in the rhizosphere of the nickel hyperaccumulator Leptoplax emarginata [J]. Environ Sci Technol, 2013, 47 (6): 2612-2620
64. Jackson TA. Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment [J]. Geoderma, 2015, 251: 78-91
65. Hinsinger P, Jaillard B, Dufey JE. Rapid weathering of a trioctahedral mica by the roots of ryegrass [J]. Soil Sci Soc Am J, 1992, 56 (3): 977-982
66. Hinsinger P, Jaillard B, Hinsinger P, Jaillard B. Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass [J]. J Soil Sci, 2010, 44 (3): 525-534
67. Hinsinger P, Gilkes RJ. Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P-fixing mineral substrate [J]. Geoderma, 1997, 75 (3): 231-249
68. Brantley SL, Megonigal JP, Scatena FN, Balogh-Brunstad Z, Barnes RT, Bruns MA, Cappellen P, Van, Dontsova K, Hartnett HE, Hartshorn AS. Twelve testable hypotheses on the geobiology of weathering [J]. Geobiology, 2011, 9 (2): 140-165
69. Yang JL, Zhang GL, Huang LM, Brookes PC. Estimating soil acidification rate at watershed scale based on the stoichiometric relations between silicon and base cations [J]. Chem Geol, 2013, 337 (1): 30-37
70. Ye XX, Wang GZ, Zhang YX, Zhao HJ. Hydroxyapatite nanoparticles in root cells: reducing the mobility and toxicity of Pb in rice [J]. Environ Sci: Nano, 2018, 5 (2): 398-407
71. Houmani H, Rabhi M, Abdelly C, Debez A. Implication of Rhizosphere Acidification in Nutrient Uptake by Plants: Cases of Potassium (K), Phosphorus (P), and Iron (Fe) [M]. Switaerland: Springer International Publishing, 2015: 103-122
72. Shahid M, Pinelli E, Dumat C. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands [J]. J Hazard Mater, 2012, 219: 1-12
73. Saccone L, Gazzè SA, Duran AL, Leake JR, Banwart SA, Ragnarsdóttir KV, Smits MM, McMaster TJ. High resolution characterization of ectomycorrhizal fungal-mineral interactions in axenic microcosm experiments [J]. Biogeochemistry, 2012, 111 (1): 411-425
74. Muthukrishnan G, Gopalasubramaniam SK, Perumal P. Prospects of Arbuscular Mycorrhizal Fungi for Heavy Metal-polluted Soil Management [M]. Switaerland: Springer International Publishing, 2018: 91-113
75. 陈保冬,张莘,伍松林,李林凤. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用 [J]. 岩矿测试, 2019, 38 (1): 1-25 [Chen BD, Zhang S, Wu SL, Li LF. The role of arbuscular mycorrhizal fungi in heavy metal translocation, transformation and accumulation in the soil-plant continuum: underlying mechanisms and ecological implications [J]. Rock Miner Anal, 2019, 38 (1): 1-25]
76. Vodnik D, Gr?man H, Ma?ek I, Elteren JT, Kova?evi? M. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil [J]. Sci Total Environ, 2008, 392 (1): 130-136
77. Cornejo P, Meier S, Borie G, Rillig MC, Borie F. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration [J]. Sci Total Environ, 2008, 406 (1): 154-160
78. 师俊杰, 米雅竹, 何永美, 李博, 蒋明, 李元, 湛方栋. 丛枝菌根真菌与膨润土对蚕豆生长和重金属累积的影响[J]. 应用与环境生物学报, 2018, 24 (5): 952-959 [Shi JJ, Mi YZ, He YM, Li B, Jiang M, Li Y, Zhan FD. Effects of bentonite and arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of faba bean [J]. Chin J Appl Environ Biol, 2018, 24 (5): 952-959]
79. Burghelea C, Zaharescu DG, Dontsova K, Maier R, Huxman T, Chorover J. Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza [J]. Biogeochemistry, 2015, 124 (1-3): 187-203
80. Souza LA, Andrade SAL, Souza SCR, Schiavinato MA. Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides [J]. Acta Physiol Plant, 2012, 34 (2): 523-531
81. Guo Y, George E, Marschner H. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants [J]. Plant Soil, 1996, 184 (2): 195-205
82. Xiao B, Lian B, Sun L, Shao W. Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus [J]. Chem Geol, 2012, 307: 1-9
83. Wei D, Li M, Wang X, Han F, Li L, Guo J, Ai L, Fang L, Liu L, Du B, Wei Q. Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge [J]. J Hazard Mater, 2016, 301: 407-415
84. Wang Q, Gao S, Ma X, Mao X, He L, Sheng X. Distinct mineral weathering effectiveness and metabolic activity between mineral-weathering bacteria Burkholderia metallica F22 and Burkholderia phytofirmans G34 [J]. Chem Geol, 2018, 489: 38-45
85. Baker BJ, Banfield JF. Microbial communities in acid mine drainage [J]. FEMS Microbiol Ecol, 2003, 44 (2): 139-152
86. Mejia J, Roden EE, Ginder-Vogel M. Influence of oxygen and nitrate on Fe (hydr)oxide mineral transformation and soil microbial communities during redox cycling [J]. Environ Sci Technol, 2016, 50 (7): 3580-3588
87.

相似文献/References:

[1]黄银晓,林舜华,孔令韶,等.内蒙阿拉善地区植物与土壤元素背景值特征及其相互关系[J].应用与环境生物学报,1996,2(04):329.
 Huang Yinxiao,Lin Shunhua,Kong Lingshao,et al.THE CHARACTERISTICS OF ELEMENT BACKGROUND VALUES OF PLANTS AND SOILS AND THEIR RELATIONSHIPS IN ALASHAN,INNER MONGOLIA[J].Chinese Journal of Applied & Environmental Biology,1996,2(06):329.
[2]李书粉,刘方,胡利宗,等.玉米性别决定基因TASSELSEED2及其同源基因的分子进化特征[J].应用与环境生物学报,2014,20(02):198.[doi:10.3724/SP.J.1145.2014.00198]
 LI Shufen,LIU Fang,HU Lizong,et al.Molecular evolutionary characteristics of maize TASSELSEED2 and homologous genes in plant species[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):198.[doi:10.3724/SP.J.1145.2014.00198]
[3]赵晓东,谢英荷,李廷亮,等.植物对污灌区土壤锌形态的影响[J].应用与环境生物学报,2015,21(03):477.[doi:10.3724/SP.J.1145.2014.11037]
 ZHAO Xiaodong,XIE Yinghe,LI Tingliang,et al.Effects of plants on forms of zinc in sewage irrigated soil[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):477.[doi:10.3724/SP.J.1145.2014.11037]
[4]刘炜婳,倪珊珊,林争春,等.植物miR408家族的进化与分子特性[J].应用与环境生物学报,2017,23(06):1042.[doi:10.3724/SP.J.1145.2017.06021]
 LIU Weihua,NI Shanshan,LIN Zhengchun,et al.Evolution and molecular characteristics of the miR408 family in plants[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):1042.[doi:10.3724/SP.J.1145.2017.06021]
[5]时欢,林玉玲,赖钟雄,等.CRISPR/Cas9介导的植物基因编辑技术研究进展[J].应用与环境生物学报,2018,24(03):640.[doi:10.19675/j.cnki.1006-687x.2017.07019]
 SHI Huan,LIN Yuling,LAI Zhongxiong,et al.Research progress on CRISPR/Cas9-mediated genome editing technique in plants[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):640.[doi:10.19675/j.cnki.1006-687x.2017.07019]

更新日期/Last Update: 2019-12-25