|本期目录/Table of Contents|

 ZHENG Shaorui,ZHU Xiaoyu**,et al.Effects of sodium chloride on n-caproate production from lactate and the mixed microbial community[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1441-1450.[doi:10.19675/j.cnki.1006-687x.2019.02018]





Effects of sodium chloride on n-caproate production from lactate and the mixed microbial community
1南京农业大学资源与环境科学学院 南京 210095 2中国科学院成都生物研究所 成都 610041
ZHENG Shaorui1 2 ZHU Xiaoyu2** ZHOU Lixiang1 WANG Xinyu2 & GU Ye1
1College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China 2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
氯化钠己酸乳酸Clostridium IV混合微生物群落
NaCl n-caproate lactate Clostridium IV mixed microbiome
X172 : X799.3
探究己酸功能菌群对NaCl的耐受浓度,以及在不同NaCl浓度条件下的己酸合成效能,为评估餐厨垃圾转化为己酸的潜力提供参考. 为探究己酸功能菌群对NaCl的耐受浓度,以及在不同NaCl浓度条件下的己酸合成效能,从而为评估餐厨垃圾转化为己酸的潜力提供参考. 通过批式试验研究不同浓度的NaCl(0、2、6、10、20和30 g/L)对以梭菌属第四族(Clostridium IV)为核心的混合菌群发酵乳酸合成己酸的效能以及群落结构的影响. 结果表明,随着NaCl浓度从2-10 g/L的升高,己酸合成效能呈下降趋势,而短链脂肪酸(乙酸、丙酸、丁酸和戊酸)的浓度呈上升趋势;当NaCl浓度达到20 g/L时,己酸合成停止,丙酸、丁酸和戊酸成为主要产物;当NaCl浓度达到30 g/L时,丙酸成为最主要的产物,细胞浓度和总ATP浓度显著下降. 对己酸发酵菌群的多样性分析结果表明,当NaCl浓度提高至10 g/L时,在系统分类的属水平上,与产己酸相关的Clostridium IV在整个菌群中的相对丰度由47.78%(空白)下降至35.06%(10 g/L),而另一种可能与产己酸相关的菌Pseudoramibacter比例则由0.04%上升至0.17%. NaCl浓度达到30 g/L时,与丙酸合成相关的菌Propionibacterium的相对丰度从0.006%(空白)上升至0.09%. 本研究表明,对于乳酸合成己酸系统来说,NaCl是一种不利的影响因素,当NaCl浓度在6 g/L及以下时,己酸菌可以保持其功能,即将乳酸主要转化为己酸;当NaCl浓度提高至10 g/L及以上时,己酸合成受到抑制;结果可为羧酸平台技术应用于餐厨垃圾处理的实际工程提供科学依据和理论支撑. (图6 表1 参53)
In this study, we explored the effect of NaCl on n-caproate and medium chain carboxylate production from lactate by Clostridium IV dominating mixed microbiome. The production and composition of the fermentation products of lactate and the microbial community were investigated at five different NaCl concentrations (2, 6, 10, 20, and 30 g/L), with 0 g/L as the control. Based on our results, the increase in NaCl concentration (from 2 to 10 g/L) triggered the decrease in n-caproate production and shifted the conversion outcome from medium chain carboxylate (n-caproate) to the rapid accumulation of short chain carboxylates (acetate, propionate, n-butyrate, and n-valerate). An NaCl concentration of 20 g/L decreased n-caproate concentration, resulting in a selection favorable to propionate, n-butyrate, and n-valerate production. A further increase in NaCl concentration to 30 g/L resulted in propionate as the occupied chemical and a decrease in the cell density and activity (depending on ATP concentration) of the mixed microbiome. Through microbial community diversity analysis, we found that as NaCl concentration increased from 0 g/L to 10 g/L, the relative abundance of Clostridium IV in the total reads decreased from 47.78% to 35.06%. Meanwhile, another genus, Pseudoramibacter, which may be related to n-caproate production, increased from 0.04% to 0.17%. When NaCl concentration increased to 30 g/L, the relative abundance of the propionate-producing bacteria, Propionibacterium, increased from 0.006% to 0.09%. In summary, NaCl is an adverse factor of the reactor microbiome that produces n-caproate from lactate. When the NaCl concentration is lower than 6 g/L, the reactor microbiome can produce n-caproate as a dominating product from lactate; however, a further increase will inhibit or cease n-caproate production from lactate.


孙营军. 杭州市餐厨垃圾现状调查及其厌氧沼气发酵可行性研究[D]. 杭州: 浙江大学, 2008 [Sun YJ. Investigation and anaerobic digestion feasibility of food waste in Hangzhou [D]. Hangzhou: Zhejiang University, 2008]
2 王智博. 天水市餐厨垃圾资源化技术路线及主体工艺设计[D]. 兰州: 兰州大学, 2013 [Wang ZB. Food waste recycling technical route and process design of Tian shui city [D]. Lanzhou: Lanzhou University, 2013]
3 张庆芳, 杨林海, 周丹丹. 餐厨垃圾废弃物处理技术概述[J]. 中国沼气, 2012, 30 (1): 22-26+37 [Zhang QF, Yang LH, Zhou DD. Overview on food waste treatment technology [J]. Chin Biog, 2012, 30 (1): 22-26+37]
4 王丽华,李宇宸,韩聪. 城市餐厨垃圾处理技术分析及思路分析[J]. 中国资源综合利用, 2018, 36 (12): 73-75 [Wang LH, Li YC, Han C. Technical analysis and thinking analysis of urban kitchen waste treatment technology [J]. Chin Resour ComprehUtiliz, 2018, 36 (12): 73-75]
5 Roghair M, Liu Y, Strik DP, Weusthuis RA, Bruins ME, Buisman CJ. Development of an effective chain elongation process from acidified food waste and ethanol into n-caproate [J]. Front Bioeng Biotechnol, 2018, 6 (50): 1-11
6 Angenent LT, Richter H, Buckel W, Spirito CA, Steinbusch KJ, Plugge CM, Hamelers HV. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemical [J]. Environ Sci Technol, 2016, 50 (6): 2796-2810
7 de Araújo Cavalcante W, Leit?o RC, Gehring TA, Angenent LT, Santaella ST. Anaerobic fermentation for n-caproic acid production: a review [J]. Process Biochem, 2017, 54: 106-119
8 Chen WS, Strik DP, Buisman CJ, Kroeze C. Production of caproic acid from mixed organic waste: an environmental life cycle perspective [J]. Environ Sci Technol, 2017, 51 (12): 7159-7168
9 Oleskowicz-Popiel P. Designing reactor microbiomes for chemical production from organic waste [J]. Trends Biotechnol, 2018, 36 (8): 747-750
10 Nzeteu CO, Trego AC, Abram F, O’Flaherty V. Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system [J]. Biotechnol Biofuels, 2018, 11 (1): 108
11 Duber A, Jaroszynski L, Zagrodnik R, Chwialkowska J, Juzwa W, Ciesielski S, Oleskowicz-Popiel P. Exploiting the real wastewater potential for resource recovery–n-caproate production from acid whey [J]. Green Chem, 2018, 20 (16): 3790-3803
12 Khor WC, Andersen S, Vervaeren H, Rabaey K. Electricity-assisted production of caproic acid from grass [J]. Biotechnol Biofuels, 2017, 10 (1): 180
13 Kucek LA, Nguyen M, Angenent LT. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome [J]. Water Res, 2016, 93: 163-171
14 Scarborough MJ, Lynch G, Dickson M, McGee M, Donohue TJ, Noguera DR. Increasing the economic value of lignocellulosic stillage through medium-chain fatty acid production [J]. Biotechnol Biofuels, 2018, 11 (1): 200
15 Spirito CM, Marzilli AM, Angenent LT. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction [J]. Environ Sci Technol, 2018, 52 (22): 13438-13447
16 Wu Q, Guo W, Bao X, Meng X, Yin R, Du J, Zheng H, Feng X, Luo H, Ren N. Upgrading liquor-making wastewater into medium chain fatty acid: Insights into co-electron donors, key microflora, and energy harvest [J]. Water Res, 2018, 145: 650-659
17 Zhu X, Zhou Y, Wang Y, Wu T, Li X, Li D, Tao Y. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6 [J]. Biotechnol Biofuels, 2017, 10 (1): 102
18 Urban C, Xu J, Str?uber H, dos Santos Dantas TR, Mühlenberg J, H?rtig C, Angenent LT, Harnisch F. Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion [J]. Energy Environ Sci, 2017, 10 (10): 2231-2244
19 Harvey BG, Meylemans HA. 1-Hexene: a renewable C6 platform for full-performance jet and diesel fuels [J]. Green Chem, 2014, 16 (2): 770-776
20 Agler MT, Werner JJ, Iten LB, Dekker A, Cotta MA, Dien BS, Angenent LT. Shaping reactor microbiomes to produce the fuel precursor n-butyrate from pretreated cellulosic hydrolysates [J]. Environ Sci Technol, 2012, 46 (18): 10229
21 Zhu X, Tao Y, Liang C, Li X, Wei N, Zhang W, Zhou Y, Yang Y, Bo T. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production [J]. Sci Rep, 2015, 5: 14360
22 Tang J, Wang X, Hu Y, Zhang Y, Li Y. Lactic acid fermentation from food waste with indigenous microbiota: effects of pH, temperature and high OLR [J]. Waste Manage, 2016, 52: 278-285
23 Li X, Chen Y, Zhao S, Hong C, Xiong Z, Luo J, Liu Y. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity [J]. Water Res, 2015, 70: 148-157
24 Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes [J]. Biotechnol Adv, 2013, 31 (6): 877-902
25 He X, Yin J, Liu J, Ting C, Shen D. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl [J]. Bioresour Technol, 2019, 271: 244-250
26 兰天, 李东伟, 高先萍. 高氯离子味精尾母液废水厌氧处理研究[J]. 环境工程学报, 2008 (8): 1074-1077 [Lan T, Li DW, Gao XP. Experimental study on anaerobic treatment of fermentation mother liquid of monosodium L-glutamate with high chloride concentration [J]. Chin J Environ Eng, 2008 (8): 1074-1077]
27 陶治平, 赵明星, 阮文权. 氯化钠对餐厨垃圾厌氧发酵产沼气影响[J]. 食品与生物技术学报, 2013, 32 (6): 596-602 [Tao ZP, Zhao MX, Ruan WQ. Effect of sodium chloride on biogas generation of kitchen waste by anaerobic fermentation [J]. J Food Sci Biotechnol, 2013, 32 (6): 596-602]
28 Kim DH, Kim SH, Shin HS. Sodium inhibition of fermentative hydrogen production [J]. Int J Hydrogen Energ, 2009, 34 (8): 3295-3304
29 Liu N, Wang Q, Jiang J, Zhang H. Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation [J]. Renew Energ, 2017, 113: 1523-1528
30 Jeison D, Del Rio A, Van Lier JB. Impact of high saline wastewaters on anaerobic granular sludge functionalities [J]. Water Sci Technol, 2008, 57 (6): 815-819
31 Prabhu R, Altman E, Eiteman MA. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions [J]. Appl Environ Microbiol, 2012, 78 (24): 8564-8570
32 Spirito CM, Richter H, Rabaey K, Stams AJ, Angenent LT. Chain elongation in anaerobic reactor microbiomes to recover resources from waste [J]. Curr Opin Biotechnol, 2014, 27: 115-122
33 Barker HA, Kamen MD, Bornstein BT. The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium kluyveri [J]. PNAS, 1945, 31 (12): 373-381
34 Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li FL, Hagemeier C, Thauer RK, Gottschalk G. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features [J]. PNAS, 2008, 105 (6): 2128-2133
35 Tao Y, Zhu X, Wang H, Wang Y, Li X, Jin H, Rui JP. Complete genome sequence of ruminococcaceae bacterium CPB6: a newly isolated culture for efficient n-caproic acid production from lactate [J]. J Biotechnol, 2017, 259: 91-94
36 Wang H, Li X, Wang Y, Tao Y, Lu S, Zhu X, Li D. Improvement of n-caproic acid production with ruminococcaceae bacterium CPB6: selection of electron acceptors and carbon sources and optimization of the culture medium [J]. Microb Cell Fact, 2018, 17 (1): 99-107
37 Detman A, Mielecki D, Ple?niak ?, Bucha M, Janiga M, Matyasik I, Chojnacka A, J?drysek MO, B?aszczyk MK, Sikora A. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle [J]. Biotechnol Biofuels, 2018, 11 (1): 116-133
38 Weimer PJ, Moen GN. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81 [J]. Appl Microbiol Biotechnol, 2013, 97 (9): 4075-4081
39 Ding HB, Tan GYA, Wang JY. Caproate formation in mixed-culture fermentative hydrogen production [J]. Bioresource Technol, 2010, 101 (24): 9550-9559
40 Gong Y, Bai JL, Yang HT, Zhang WD, Xiong YW, Ding P, Qin S. Phylogenetic diversity and investigation of plant growth-promoting traits of actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu, China [J]. Syst Appl Microbiol, 2018, 41 (5): 516-527
41 马波. 基于ATP的活性污泥系统关键参数优化研究[D]. 重庆: 重庆大学, 2008 [Ma B. Study on optimizing parameter in system of activited sludge based on ATP [D]. Chongqing: Chongqing University, 2008]
42 刘研萍, 燕艳, 方刚, 邹德勋, 李秀金. 高温水解预处理对餐厨垃圾厌氧消化的影响[J]. 中国沼气, 2014, 32 (1): 43-48 [Liu YP, Yan Y, Fang G, Zou DX, Li XJ. Influence of thermal hydrolysis pretreatment on the kitchen waste anaerobic digestion [J]. Chin Biog, 2014, 32 (1): 43-48]
43 魏娜, 朱晓宇, 陶勇, 王翔, 梁程, 李大平, 何晓红. 浓香型白酒窖泥中优势菌群的定量PCR分析[J]. 应用与环境生物学报, 2015, 21 (4): 635-639 [Wei N, Zhu XY, Tao Y, Wang X, Liang C, Li DP, He XH. Detection of dominant prokaryotes in pit mud of Chinese strong-flavor liquor based on qPCR [J]. Chin J Appl Environ Biol, 2015, 21 (4): 635-639]
44 Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J. Best practices for analysing microbiomes [J]. Nat Rev Microbiol, 2018: 16: 410-422
45 Hernandez-Eugenio G, Fardeau ML, Cayol JL, Patel BK, Thomas P, Macarie H, Garcia JL, Ollivier B. Sporanaerobacter acetigenes gen. nov., sp. nov., a novel acetogenic, facultatively sulfur-reducing bacterium [J]. Int J Syst Evol Micr, 2002, 52 (4): 1217-1223
46 Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, De Weirdt R, Kerckhof FM, Van de Wiele T. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model [J]. ISME J, 2013, 7 (5): 949-961
47 Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product [J]. Appl Environ Microbiol, 2004, 70 (10): 5810-5817
48 Iino T, Mori K, Tanaka, K. Suzuki KI, Harayama S. Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam [J]. Int j Systc evol Micr, 2007, 57 (8): 1840-1845
49 Siqueira Jr JF, R??as IN. Pseudoramibacter alactolyticus in primary endodontic infections [J]. J Endodont, 2003, 29 (11): 735-738
50 Ezaki T, Kawamura Y, Li N, Li ZY, Zhao L, Shu S. Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus [J]. Int J Syst Evol Micr, 2001, 51 (4): 1521-1528
51 Xu J, Hao J, Guzman JJ, Spirito CM, Harroff LA, Angenent LT. Temperature-phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid: no external e-donor [J]. Joule, 2018, 2 (2): 280-295
52 Rotstein OD, Pruett TL, Fiegel VD, Nelson RD, Simmons RL. Succinic acid, a metabolic by-product of Bacteroides species, inhibits polymorphonuclear leukocyte function [J]. Infect Immun, 1985, 48 (2): 402-408
53 Hino T, Kuroda S. Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate [J]. Appl Environ Microbiol, 1993, 59 (1): 255-259


 WEI Na,ZHU Xiaoyu,TAO Yong,et al.Detection of dominant prokaryotes in pit mud of Chinese strong-flavor liquor based on qPCR[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):635.[doi:10.3724/SP.J.1145.2015.02021]
[2]王薪淯 朱晓宇** 李海翔** 魏永 奉鑫 任冰 何勇.[综 述] 乳酸碳链延长技术及其在有机废弃物资源化中的应用研究进展[J].应用与环境生物学报,2020,26(04):1.[doi:10.19675/j.cnki.1006-687x.2019.09038]
 WANG Xinyu,ZHU Xiaoyu**,et al.Lactate chain elongation biotechnology and its current advances in n-caproate production from organic waste streams[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1.[doi:10.19675/j.cnki.1006-687x.2019.09038]

更新日期/Last Update: 2019-12-25