|本期目录/Table of Contents|

[1]王爱善,詹明晔,裴恩乐.食物转化期的大熊猫幼仔肠道细菌结构衍变及其与纤维素酶活性的相关性[J].应用与环境生物学报,2019,25(05):1154-1160.[doi:10.19675/j.cnki.1006-687x.2019.01051]
 WANG Aishan,ZHAN Mingye & PEI Enle**.Intestinal bacterial structure evolution of giant panda cubs during the food transformation stage and its correlation with cellulose digestion[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1154-1160.[doi:10.19675/j.cnki.1006-687x.2019.01051]
点击复制

食物转化期的大熊猫幼仔肠道细菌结构衍变及其与纤维素酶活性的相关性
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1154-1160
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Intestinal bacterial structure evolution of giant panda cubs during the food transformation stage and its correlation with cellulose digestion
作者:
王爱善詹明晔裴恩乐
1上海动物园 上海 200335 2同济大学环境科学与工程学院上海市污染控制与生态安全研究院 上海 200092
Author(s):
WANG Aishan1 ZHAN Mingye2 & PEI Enle1**
1 Shanghai Zoo, Shanghai 200335, China 2Institute of Pollution Control and Ecological Safety in Shanghai, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
关键词:
大熊猫幼仔肠道细菌纤维素酶活性食物转化阶段
Keywords:
giant panda cub intestinal bacterium cellulose activity food conversion stage
分类号:
Q939.99
DOI:
10.19675/j.cnki.1006-687x.2019.01051
摘要:
大熊猫是具有植食性转化阶段的特殊的食肉动物,但本身对纤维素的消化能力极低,主要依赖于肠道微生物的作用;处于食物转化阶段的大熊猫幼仔是敏感而脆弱的,对纤维素的适应消化能力也是保证其存活的关键. 通过分析食物转化期大熊猫幼仔粪便中纤维素酶活性和肠道细菌多样性的变化,探讨大熊猫幼仔食物转化阶段肠道细菌性质和纤维素酶活性的相关性,以期为优化食物转化期大熊猫的饲养技术提供一定的理论指导. 结果显示,大熊猫幼仔食物转化阶段纤维素酶活性变化较大,特别是增加竹子的摄入量后,大熊猫个体纤维素酶活性普遍显著增加. 大熊猫肠道细菌的结构和数量在食物转化阶段也存在较大变化,且与幼仔消化纤维素密切相关,如Lactobacillus、Romboutsia等典型的肉食动物肠道菌的丰度在大熊猫幼仔肠道中数量减少,而纤维素降解菌属Cellulosilyticum的丰度明显增加,特别是大熊猫肠道优势菌属Streptococcus也表现出与其纤维素消化的密切联系. 总体而言,食物转化阶段的大熊猫幼仔对纤维素有一定的适应性消化能力,其和肠道细菌菌群的演变有较大的相关性. (图3 表6 参30)
Abstract:
To adapt to their environment, giant pandas have gradually formed a habit of eating bamboo, i.e., they are a special type of carnivore with a herbivore transformation stage. However, the giant panda has a very low ability to digest cellulose, and it relies mainly on the function of intestinal microbes. Giant panda cubs are sensitive and fragile at the food conversion stage, and their ability to adapt to cellulose digestion is key to their survival. This study analyzed the changes in cellulase activity and intestinal bacterial diversity of giant panda pups during the food conversion period and investigated the co-relationship between bacterial properties and cellulase activities to provide a guide for optimizing the feeding of giant pandas during the food conversion stage. Cellulase activity in giant panda infants was found to change significantly during the food transformation stage, especially after they increased their intake of bamboo. The structure and quantity of giant panda gut bacteria also showed marked changes during the food conversion stage; these changes were closely related to the young cubs’ ability to digest cellulose. The abundance of the typical carnivorous intestinal bacteria, Lactobacillus and Romboutsia, decreased, whereas the abundance of Cellulosilyticum significantly increased. In particular, Streptococcus, the dominant genus of the giant panda, showed a close association with cellulose digestion. In general, the adaptation of panda cubs for cellulose digestion in the food conversion stage was related to the evolution of their intestinal bacterial flora.

参考文献/References:

1 何东阳. 大熊猫取食竹选择、消化率及营养和能量对策的研究[D]. 北京: 北京林业大学, 2010 [He DY. Study on bamboo selection, digestibility, nutrition and energy countermeasures for giant pandas [D]. Beijing: Beijing Forestry University, 2010]
2 Zhang W, Liu W, Hou R, Zhang L, Stephan Schmitz-Esser, Sun HB, Xie JJ, Zhang YF, Wang CD, Li LF, Yue BS, Huang H, Wang HR, Shen FJ & Zhan ZH. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose [J]. ISME J, 2018 (12): 1319-1328
3 Wei F, Wang X, Wu Q. The giant panda gut microbiome [J]. Trends Microbiol, 2015, 23 (8): 450-452
4 房伟, 方泽民, 张学成, 肖亚中. 肠道微生物协助大熊猫转化降解木质素的证据[R]. 全国微生物资源学术暨国家微生物资源平台运行服务研讨会, 成都, 2012 [Fang W, Fang ZM, Zhang XC, Xiao YZ. Intestinal microorganisms assisting giant pandas in transforming and degrading lignin [R]. National Microbial Resources Academic and National Microbial Resource Platform Operation Service Seminar, Chengdu, 2012]
5 Guo W, Mishra S, Zhao J, Tang JS, Zeng B, Kong FL, Ning RH, Li M, Zhang HZ, Zeng YT, Tian YLZ, Zhong YH, Luo HD, Liu YH, Yang JD, Yang MY, Zhang MW, Li Y, Ni QY, Li CW, Wang CD, Li DS, Zhang HM, Zuo ZL, Li Y. Metagenomic study suggests that the gut microbiota of the giant panda (Ailuropodamelanoleuca) may not be specialized for fiber fermentation. [J]. Front Microbiol, 2018, 9: 229
6 邹兴淮, 曾鲁军, 孙中武, 闫文, 何光昕, 吴孔菊, 陈玉村, 翁妮娜. 大熊猫疾病死亡因素分析及其保护对策[J]. 东北林业大学学报, 1998 (1): 54-57 [Zou XH, Zeng LJ, Sun ZW, Yan W, He GB, Wu KJ, Chen YC, Weng NN. Analysis of death factors of giant panda diseases and their protection strategies [J]. J NE For Univ, 1998 (1): 54-57]
7 刘定震, 张贵权, 魏荣平, 陈林强, 张和民. 圈养繁育大熊猫幼仔生长发育规律的研究[J]. 北京师范大学学报(自然科学版), 2001 (3): 396-401 [Liu DZ, Zhang GQ, Wei RP, Chen LQ, Zhang HM. Study on the growth and development regularity of giant panda cubs in captivity [J]. J Beij Norm Univ (Nat Sci), 2001 (3): 396-401]
8 丁赟. 探究圈养大熊猫肠道菌群的发育动态[D]. 南昌: 南昌大学, 2017 [Ding B. Exploring the developmental dynamics of the intestinal flora of captive giant pandas [D]. Nanchang: Nanchang University, 2017]
9 罗永久, 钟志军, 彭广能, 唐天亮, 解冰冰, 王承东, 吴江兰, 刘俊卿, 孙鸿雁. 不同食性动物肠道菌群的ERIC-PCR指纹图谱分析[J]. 中国兽医学报, 2014, 34 (11): 1764-1769 [Luo YJ, Zhong ZJ, Peng GN, Tang TL, Xie BB, Wang CD, Wu JL, Liu JQ, Sun YN. Characterization of intestind bacterial diversity for different feeding habit animals by ERIC-PCR fingerprinting [J]. Chin J Vet Sci, 2014, 34 (11): 1764-1769]
10 Williams CL, Dill-Mcfarland KA, Sparks DL, Kouba AJ, Willard ST, Suen G, Brown AE. Dietary changes during weaning shape the gut microbiota of red pandas (Ailurusfulgens) [J]. ConservPhysiol, 2018, 6 (1): 10.1093/conphys/cox075
11 Shao Y. Symbiont-derived antimicrobials contribute to the control of the Lepidopteran gut microbiota [J]. Cell Chem Biol, 2017, 24 (1): 66
12 Hesla HM. Impact of lifestyle on the gut microbiota of healthy infants and their mothers—the ALADDIN birth cohort [J]. FEMS Microbiol Ecol, 2015, 90 (3): 791-801
13 Zhu L, Wu Q, Dai J, Zhang SN, Wei FW. Evidence of cellulose metabolism by the giant panda gut microbiome [J]. PNAS, 2011, 108 (43): 17714-17719
14 张文平, 张志和. 大熊猫肠道宏基因组发育分析[R]. 第十三届全国野生动物生态与资源保护学术研讨会暨第六届中国西部动物学学术研讨会, 成都, 2017 [Zhang WP, Zhang ZH. Macro genome development analysis of giant panda’s intestine [R]. The 13th National Symposium on Wildlife Conservation and the 6th Western China Zoological Symposium, Chengdu, 2017]
15 蒋婵, 李青青, 刘莉莉, 周杰珑, 陈粉粉, 杨亚晋, 张璇, 郭爱伟. 大熊猫10种潜在食竹营养成分的季节变化[J]. 南京林业大学学报(自然科学版), 2018, 42 (5): 148-154 [JiangC, Li QQ, Liu LL, Zhou JL, ChenFF, Yang YJ, ZhangX, Guo AW. Seasonal variation of nutrient composition of 10 potential bamboo species of giant pandas [J]. J Nanjing For Univ (Nat Sci ed), 2018, 42 (5): 148-154]
16 赵志琛, 林达, 孙雪, 张贵权, 贾竞波. 大熊猫弃食竹秆皮的化学原因[J]. 四川动物, 2016, 35 (2): 161-166 [Zhao ZC, Lin D, Sun X, Zhang GQ, Jia JB.Chemical reasons for giant pandas to abandon bamboo stalks [J].Sichuan Anim, 2016, 35 (2): 161-166]
17 徐昶, 龙敏南, 邬小兵, 徐惠娟, 陈重安, 张凤章, 许良树. 高产纤维素酶菌株的筛选及产酶条件研究[J]. 厦门大学学报 (自然版), 2005, 44 (1): 107-111 [Xu C, Long MN, Wu XB, Xu HJ, Chen CA, Zhang FZ, Xu LS. Screening and characterization of a high cellulase producing strainAspergillus glaucus XC9 [J]. J Xiamen Univ (Nat Sci), 2005, 44 (1): 107-111]
18 袁楠, 亢宗静, 卢圣鄂, 王莹燕, 张小平, 辜运富. 富集培养下的若尔盖高原湿地低温纤维素降解细菌群落结构[J]. 应用与环境生物学报, 2016, 22 (3): 402-408 [Yuan N, Kang ZJ, Lu SE, Wang YY, Zhang XP, Gu YF. Community structures of the cold-adapted cellulose-degrading bacteria in the Zoige plateau wetland under enrichment culture conditions [J]. Chin J Appl Environ Biol, 2016, 22 (3): 402-408]
19 曾文慧, 钟俊鸿, 李秋健, 刘炳荣. 反应温度对台湾乳白蚁内外源纤维素酶活力的差异影响[J]. 江苏农业科学, 2017, 45 (8): 91-94 [Zeng WH, Zhong JH, Li QJ, Liu BR. Effects of reaction temperature on endogenous and exogenous cellulase activities of C. formosanus in Taiwan [J]. Jiangsu Agric Sci, 2017, 45 (8): 91-94]
20 Dutilleul P. The Mantel test versus Pearson’s correlation analysis: assessment of the differences for biological and environmental studies [J]. J Agric Biol Environ Stat, 2000, 5 (2): 131-150
21 Huang L, Gao X, Liu M. Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro-polluted river water [J]. Ecol Eng, 2012, 46: 98-106
22 魏辅文. 大熊猫演化保护生物学研究[J]. 中国科学: 生命科学, 2018, 48 (10): 1048-1053 [Wei FW.Giant panda evolutionary conservation biology [J]. Sci Sin Vitae, 2018, 48 (10): 1048-1053
23 Gerritsen J, Hornung B, Renckens B. Genomic and functional analysis of Romboutsiailealis CRIBT reveals adaptation to the small intestine [J]. Peer J, 2017, 5: e3698; 10.7717/peerj.3698
24 Kaila M, Isolauri E, Soppi E, Du G, Guo JS, Theoneste N. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human lactobacillus strain [J]. Ped Res, 1992, 32 (2): 141-144
25 王璨, 东秀珠. 居瘤胃解纤维素菌细胞密度与纤维素酶的合成[J]. 微生物学报, 2012, 52 (9): 1069-1074 [WangC, Dong XZ. Study on cell density and cellulase synthesis of rumen cellulolytic bacteria [J]. Acta Microbiol Sin, 2012, 52 (9): 1069-1074]
26 Shichun C, Jiabao L, Fen Ze H, Zhang KG, Luo YM, BenjaminJ, Robert B, GarthE, Dong XZ. Cellulosilyticumruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate-borne fibrolyticenzymes [J]. Appl Environ Microbiol, 2010, 76 (12): 3818-3824
27 Chu H. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science, 2016, 352 (6289): 1116
28 秦伟, 王维平. 白蚁消化道及肠道微生物研究简述[J]. 生物灾害科学, 2007, 30 (2): 68-69 [Qin W, Wang WP. Brief introduction of termite digestive tract and intestinal microbe research [J]. Biol Dis Sci, 2007, 30 (2): 68-69]
29 彭广能, 熊焰, 李德生, 张和民, 何廷美. 亚成体大熊猫肠道正常菌群变化的初步研究[J]. 四川畜牧兽医, 1999 (5): 23 [ Peng GN, Xiong Y, Li DS, Zhang HM, He TM. A preliminary study on the changes of normal intestinal flora in sub-adult giant panda [J]. Sichuan Anim Husb Vet Med, 1999 (5): 23]
30 王卫云, 李大彪, 于永强, 邢媛媛, 李子健. 瘤胃4株纤维降解细菌的分离鉴定及其纤维降解特性[J]. 畜牧兽医学报, 2016, 47 (11): 2294-2300 [Wang WY, Li DB, Yu YQ, Xing YY, Li ZJ. Isolation and identification of four fiber degrading bacteria from rumen and their fiber degradation characteristics [J].J Anim Husb Vet Med, 2016, 47 (11): 2294-2300]

相似文献/References:

[1]方盛国,张万诚,冯文和,等.大熊猫、黑熊和小熊猫毛发无机元素的比较[J].应用与环境生物学报,1995,1(03):232.
 Fang Shengguo,Zhang Wancheng,Feng Wenhe,et al.A COMPARATIVE STUDY OF INORGANIC ELEMENTS IN THE HAIRS OF AILUROPODA MEIANOLEUCUS,SELENARCTOS THIBETANUS AND AILURUS FULGENS[J].Chinese Journal of Applied & Environmental Biology,1995,1(05):232.
[2]方盛国,冯文和,张安居,等.佛坪三官庙地区大熊猫种群数量的DNA指纹分析[J].应用与环境生物学报,1996,2(03):289.
 Fang Shengguo,Feng Wenhe,Zhang Anjn,et al.DNA FINGERPRINTING ANALYSIS OF THE POPULATION NUMBER OF GIANT PANDAS LIVING IN SANGUANMIAO IN FOPING[J].Chinese Journal of Applied & Environmental Biology,1996,2(05):289.
[3]余健秋,钟顺隆,李光汉,等.大熊猫人工育幼研究[J].应用与环境生物学报,1997,3(01):36.
 Yu Jianqiu,Zhong Shunlong,Li Guanghsn,et al.ARTIFICIAL FEEDING OF INFANT GIANT PANDA[J].Chinese Journal of Applied & Environmental Biology,1997,3(05):36.
[4]周世强,黄金燕,张亚辉,等.卧龙自然保护区大熊猫栖息地植物群落多样性Ⅴ:不同竹林的物种多样性[J].应用与环境生物学报,2009,15(02):180.[doi:10.3724/SP.J.1145.2009.00180]
 ZHOU Shiqiang,HUANG Jinyan,ZHANG Yahui,et al.Diversity of Plant Community of Giant Panda’s Habitat in the Wolong Nature Reserve Ⅴ: Species Diversity in Different Bamboo Forests[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):180.[doi:10.3724/SP.J.1145.2009.00180]
[5]范隆庆,董岚,张顺林,等.凉山山系大熊猫栖息地的景观格局[J].应用与环境生物学报,2010,16(02):179.[doi:10.3724/SP.J.1145.2010.00179]
 FAN Longqing,DONG Lan,ZHANG Shunlin,et al.Landscape Pattern of Giant Panda Habitat in the Liangshan Mountains, Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):179.[doi:10.3724/SP.J.1145.2010.00179]
[6]周世强,黄金燕,张亚辉,等.野化培训大熊猫采食和人为砍伐对拐棍竹无性系种群生物量的影响[J].应用与环境生物学报,2012,18(01):1.[doi:10.3724/SP.J.1145.2012.00001]
 ZHOU Shiqiang,HUANG Jinyan,ZHANG Yahui,et al.Effects of Wildness Training Giant Pandas?Grazing and Artificial Harvesting on Clone Population Biomass of Umbrella Bamboo (Fargesia robusta)*[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):1.[doi:10.3724/SP.J.1145.2012.00001]
[7]侯宁,戴强,冉江洪,等.大相岭山系泥巴山大熊猫生境廊道设计[J].应用与环境生物学报,2014,20(06):1039.[doi:10.3724/SP.J.1145.2014.06003]
 HOU Ning,DAI Qiang,RAN Jianghong,et al.A corridor design for the giant panda in the Niba Mountain of China[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):1039.[doi:10.3724/SP.J.1145.2014.06003]
[8]张晋东,李玉杰,王玉君,等.两种野生大熊猫种群数量调查方法对比[J].应用与环境生物学报,2017,23(06):1142.[doi:10.3724/SP.J.1145.2017.01010]
 ZHANG Jindong**,LI Yujie,WANG Yujun,et al.Comparison of two population investigation methods for wild giant pandas[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):1142.[doi:10.3724/SP.J.1145.2017.01010]
[9]晋蕾,周应敏,李才武,等.野化培训与放归、野生大熊猫肠道菌群的组成和变化[J].应用与环境生物学报,2019,25(02):344.[doi:10.19675/j.cnki.1006-687x.2018.06007]
 JIN Lei#,ZHOU Yingmin#,LI Caiwu,et al.Composition and variation of gut microbiome of trained, preparatory reintroduced, reintroduced and wild giant pandas[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):344.[doi:10.19675/j.cnki.1006-687x.2018.06007]
[10]詹明晔,付小花,张姝,等.不同地区成体大熊猫肠道微生物结构差异性及其与纤维素消化能力的相关性[J].应用与环境生物学报,2019,25(03):736.[doi:10.19675/j.cnki.1006-687x.201808012]
 ZHAN Mingye,FU Xiaohua,ZHANG Shu,et al.Differences of the intestinal microbial structure of adult giant panda in different regions and its correlation with the digestibility of cellulose[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):736.[doi:10.19675/j.cnki.1006-687x.201808012]

更新日期/Last Update: 2019-10-25