|本期目录/Table of Contents|

[1]张晓兰,刘桂民,徐海燕,等.热融滑塌对青藏高原北麓河荒漠草原土壤细菌群落的影响[J].应用与环境生物学报,2019,25(06):1327-1334.[doi:10.19675/j.cnki.1006-687x.2019.01049]
 ZHANG Xiaolan,LIU Guimin**,et al.Effects of thaw slump on the bacterial community in a desert steppe in the Beiluhe Region of the Qinghai-Tibet Plateau[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1327-1334.[doi:10.19675/j.cnki.1006-687x.2019.01049]
点击复制

热融滑塌对青藏高原北麓河荒漠草原土壤细菌群落的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1327-1334
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Effects of thaw slump on the bacterial community in a desert steppe in the Beiluhe Region of the Qinghai-Tibet Plateau
作者:
张晓兰刘桂民徐海燕李新星吴小丽纪庚好李莉莎吴晓东
1兰州交通大学环境与市政工程学院 兰州 730070 2中国科学院西北生态环境资源研究院,冰冻圈国家重点实验室青藏高原冰冻圈观测研究站 兰州 730000
Author(s):
ZHANG Xiaolan1 2 LIU Guimin1** XU Haiyan1 LI Xinxing1 WU Xiaoli1 JI Genghao1 LI Lisha1 & WU Xiaodong2
1 School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2 Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
关键词:
热融滑塌青藏高原荒漠草原细菌群落多年冻土高通量测序
Keywords:
thaw slump Qinghai-Tibetan Plateau desert steppe bacterial community permafrost high-throughput sequencing
分类号:
S812 : S154.36
DOI:
10.19675/j.cnki.1006-687x.2019.01049
摘要:
多年冻土退化会引起热融滑塌,进而对多年冻土区的生态系统产生影响,但热融滑塌对土壤细菌群落的影响还不清楚. 研究区选择青藏高原中部的荒漠草原地区. 利用Illumina测序技术,对土壤细菌的16S rRNA V3-V4高变区进行测序,在纲水平上分析了3种微地貌(对照区、滑塌区、沉降区)下表层0-30 cm土壤细菌的α多样性、物种丰度和组成,并结合土壤理化指标研究了影响细菌群落结构的环境因子. 结果显示,土壤细菌在纲水平上共有91个细菌类群,放线菌纲(29.4%,Actinobacteria)、酸杆菌纲(14.16%,Acidobacteria)、α-变形菌纲(12.69%,Alphaproteobacteria)和芽单胞菌纲(6.92%,Gemmatimonadetes)是优势菌群,放线菌纲在各采样点相对丰度最高. 热融滑塌改变了土壤含水量、全碳和有机碳等理化指标. Mantel测试和RDA分析表明,土壤全碳和含水量是影响细菌群落结构的关键环境因子;相关性分析表明,土壤含水量、电导率、全氮是影响细菌群落多样性和优势菌纲相对丰度的关键环境因子. 本研究表明在荒漠草原地区,热融滑塌会降低土壤碳含量和酸杆菌纲的相对丰度,并对土壤细菌群落的结构、多样性及在冻土中的分布产生影响. (图6 表2 参36)
Abstract:
Permafrost degradation leads to the formation of thaw slumps, which further affects permafrost ecosystems. However, the effects of thaw slump on bacterial community remain largely unknown. For the research site, we selected a desert steppe area in the central Qinghai-Tibetan Plateau. The Illumina sequencing technique was used to examine the 16S rRNA V3-V4 hypervariable region of soil bacterial communities. We examined α diversity, relative abundances, and bacterial community composition at the class level in soils of three landform micromorphologies (control, collapsing, slumped). The soil physicochemical properties were also investigated in order to explore the main environmental factors affecting the bacterial community structure. In total, 91 classes were observed, among which the dominant classes were Actinobacteria (29.4%), Acidobacteria (14.16%), α-Proteobacteria (12.69%), and Gemmatimonadetes (6.92%). Actinobacteria were the most abundant in the soils of all three landforms. The results showed that thaw slump dramatically changed the physicochemical properties of the soil, including soil water content, total carbon, and organic carbon content. The Mantel test and RDA analysis showed that soil total carbon and water content were the main environmental factors affecting bacterial community structure. The correlation analysis showed that soil water content, conductivity, and total nitrogen were the driving factors of bacterial diversity and relative abundances of dominant classes. This study showed that thaw slump in desert steppe area decreased soil carbon contents and relative abundance of Acidobacteria. The soil bacterial structure, diversity, and distribution were also greatly affected by thaw slumps.

参考文献/References:

1. Washburn AL. Geocryology-A Survey of Periglacial Processes and Environments [M]. London: Edward Arnold, 1979: 43
2. Dobinski W. Permafrost [J]. Earth-Sci Rev, 2011, 108 (3-4): 158-169
3. 李定瑶. 青藏高原多年冻土区可培养微生物多样性及生长特性研究[D]. 兰州: 兰州大学, 2014 [Li DY. Diversity and physiological characteristics of culturable microbes in Qinghai-Tibet Plateau permafrost region [D]. Lanzhou: Lanzhou University, 2014]
4. Jin HJ, Li SX, Cheng GD, Ling WS, Li X. Permafrost and climatic change in China [J]. Glob Planet Change, 2000, 26 (4): 387-404
5. Zou DF, Zhao L, Sheng Y, Chen J, Hu GJ, Wu TH, Wu JC, Xie CW, Wu XD, Pang QQ, Wang W, Du EJ, LiWP, Liu GY, Li J, Qin Y H, Qiao YP, Wang ZW, Shi JZ, Cheng GD. A new map of permafrost distribution on the Tibetan Plateau [J]. Cryosphere, 2017, 11 (6): 2527-2542
6. Wu QB, Zhang TJ, Liu YZ. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) railway from 2006 to 2010 [J]. Cryosphere, 2012, 6 (3): 607-612
7. Qin DH, Ding YJ, Xiao CD, Kang SC, Ren JW, Yang JP, Zhang SQ. Cryospheric Science: research framework and disciplinary system [J]. Natl Sci Rev, 2018, 5 (2): 141-154
8. 杨思忠, 金会军. 冻融作用对冻土区微生物生理和生态的影响[J]. 生态学报, 2008, 28 (10): 5065-5074 [Yang SiZ, Jin HJ. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally-froze ground and in permafrost [J]. Acta Ecol Sin, 2008, 28 (10): 5065-5074]
9. 秦璐, 吕光辉, 何学敏. 艾比湖地区冻融作用对土壤微生物数量和群落结构的影响[J]. 冰川冻土, 2013, 35 (6): 1590-1599 [Qin L, Lü GH, He XM. Effects of freezing-thawing on soil microbial quantity and community structure around the Ebinur Lake [J]. J Glaciol Geocryol, 2013, 35 (6): 1590 -1599]
10. Omelyansky VL. Bakteriologicheskoe issledovanie Sanga mamonta Prilegayushchei poch (Bacteriological investigation of the Sanga mammoth and surrounding soil) [J]. Ark Biol Nauk, 1911, 16: 335-340
11. Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM, Lomstein BA, Finster KW. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, northern Norway [J]. Environ Microbiol, 2007, 9 (11): 2870-2884
12. Ganzert L, Lipsk A, Hubberten HW, Wagner D. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston island, South Shetland Archipelago, Antarctica [J]. Microbiol Ecol, 2011, 76 (3): 476-491
13. Bai Y, Yang DQ, Wang JHi, Xu SJ, Wang XX, An LZ. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tian-shan Mountains, northwestern China [J]. Res Microbiol, 2006, 157 (8): 741-751
14. Feng HY, Ma XJ, Zhang GS , Bai Y, Fei GQ, Cheng GD, An LZ, Liu GX. Culturing and counting the microbial cells in permafrost on the Tibetan Plateau [J]. J Glaciol Geocryol, 2004, 26 (2): 182-187
15. Kim HM, Jung JY, Yergeau E. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska [J]. FEMS Microbiol Ecol, 2014, 89 (2): 465-475
16. Brockett BFT, Prescott CE,Grayston SJ. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada [J]. Soil Biol Biochem, 2012, 44 (1): 9-20
17. 杨思忠, 金会军, 魏智, 吉延峻, 何瑞霞. 微生物对冻土生境的适应以及对全球变化和寒区工程扰动的响应: 进展与展望[J]. 冰川冻土, 2007, 29 (2): 279-285 [Yang SZ, Jin HJ, Wei Z, Ji YJ, He RX. Microbial adaptation to the habitat of permafrost and their responses to global change and engineering disturbance in cold regions: advances and prospects [J]. J Glaciol Geocryol, 2007, 29 (2): 279-285]
18. Joshi PA, Shekhawat DB. Microbial contributions to global climate changes in soil environments: impact on carbon cycle [J]. Ann Appl Bio-Sci, 2014, 1 (8): R7-R9
19. 孙哲. 青藏高原多年冻土区热融滑塌对土壤冻融侵蚀影响[D]. 兰州: 兰州大学, 2017 [Sun Z. Effect of a thaw slump on soil freeze-thaw erosion in the permafrost region of the Qinghai-Tibetan plateau, China [D]. Lanzhou: Lanzhou University, 2017]
20. Abbott BW, Jones JB. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra [J]. Glob Change Biol, 2016, 21 (12): 4570-4587
21. Wu XD, Zhao L, Liu GM, Xu HY, Zhang XL, Ding YJ. Effects of permafrost thaw-subsidenceon soil bacterial communities in the southern Qinghai-Tibetan Plateau [J]. Appl Soil Ecol, 2018, 128 (7): 81-88
22. Wang ZW, Wang Q, Zhao L, Wu XD, Yue GY, Nan ZI, Liu GY, Pang QQ, Fang HB, Wu TH, Shi JZ, Jiao KQ, Zhao YH, Zhang LL. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau [J]. J Mount Sci, 2016, 13 (6): 1035-1046
23. 罗京, 牛富俊, 林战举, 鲁嘉濠. 青藏高原北麓河地区典型热融湖塘周边多年冻土特征研究[J]. 冰川冻土, 2012, 34 (5): 1110-1117 [Luo J, Niu FJ, Lin ZJ, Lu JH. Permafrost features around a representative thermokarst lake in Beiluhe on the Tibetan Plateau [J]. J Glaciol. Geocryol, 2012, 34 (5): 1110-1117]
24. 朱兆荣, 李勇, 薛春晓, 韩龙武. 1976-2010年青藏铁路沿线多年冻土区降水变化特征[J]. 冰川冻土, 2011, 33 (4): 846-850 [Zhu ZR, Li Y, Xue CX, Han LW. Changing tendency of precipitation in permafrost regions along Qinghai-Tibet railway during last thirty years [J]. J Glaciol Geocryol, 2011, 33 (4): 846-850]
25. 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000 [Bao SD. Soil Agro-chemistrical Analysis [M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000]
26. Xu N, Tan GC, Wang HY, Gai XP. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure [J]. Eur J Soil Biol, 2016, 74 (2): 1-8
27. 李文静. 增氮增雨对贝加尔针茅草甸草原土壤细菌群落结构与多样性动态的影响[D]. 长春: 东北师范大学, 2016 [Li WJ. The influence of nitrogen deposition and increased precipitation on soil microbial composition and diversity dynamic in a Stipa baicalensis meadow steppe [D]. Changchun: Northeast Normal University, 2016]
28. Chen P, Zhang LiM, Guo XX, Dai X, Liu L, Xi LJ, Wang J, Song L,Wang YZ, Zhu YX, Huang L, Huang Y. Diversity, biogeography, and biodegradation potential of actinobacteria in the deep-sea sediments along the Southwest Indian Ridge [J]. Front Microbiol, 2016, 7 (8): 1-17
29. 尹娜. 中国北方主要草地类型土壌细菌群落结构和多样性变化[D]. 长春: 东北师范大学, 2014. [Yin Na. Changes in structure and diversity of soil microbial communities across themain grasslands in northern China [D]. Changchun: Northeast Normal University, 2014]
30. 李新, 焦燕, 代钢, 杨铭德, 温慧洋. 内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性[J]. 中国环境科学, 2016, 36 (1): 249-260 [Li X, Jiao Y, Dai G, Yang MD, Wen HY. Soil bacterial community diversity under different degrees of saline-alkaline in the Hetao Area of Inner Mongolia [J]. Chin Environ Sci, 2016, 36 (1): 249-260.]
31. Zhang XF, Xu SJ, Li CM, Zhao L, Feng HY, Yue GY, Ren ZW, Cheng GD. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau [J]. Res Microbiol, 2014, 165 (2): 128-139
32. Monteux S, Weedon JT, Blume-Weery G, Gavazov K, Jassey VEJ, Johansson M, Keuper F, Olid C, Dorrepaal E. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration [J]. ISME J, 2018, 7 (6): 1-13
33. 吴玲. 富营养化太湖沉积物中微生物群落及对环境因子的响应[J]. 应用与环境生物学报, 2019, 25 (6): 1470-1476 [Wu L. Response of microbial community structure in eutrophic Taihu sediments to environmental factors [J]. Chin J Appl Environ Biol, 2019, 25 (6): 1470-1476
34. Ren BH, Hu YM, Chen BD, Zhang Y, Thiele J, Shi RJ, Liu M, Bu RC. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China [J]. Sci Rep, 2018, 8 (1): 1-10
35. Chu HY, Sun HB, Tripathi BM, Adams J M, Huang R, Zhang YJ, Shi Y. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau [J]. Environ Microbiol, 2016, 18 (5): 1523-1533
36. Ramette A, Tiedje JM. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem [J]. PNAS, 2007, 104 (8): 2761-2766
37.

相似文献/References:

[1]陈文年,吴彦,吴宁,等.高山草甸群落生物量在融雪梯度上的变化[J].应用与环境生物学报,2009,15(06):745.[doi:10.3724/SP.J.1145.2009.00745]
 CHEN Wennian,WU Yan,WU Ning,et al.Changes in Community Biomass along Snow-melting Gradient in Alpine Meadow[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):745.[doi:10.3724/SP.J.1145.2009.00745]
[2]冯晓虎,朱卫华,吴弘,等.若尔盖高原湿地纤维素降解菌组成及产酶特性[J].应用与环境生物学报,2010,16(03):399.[doi:10.3724/SP.J.1145.2010.00399]
 FENG Xiaohu,ZHU Weihua,WU Hong,et al.Composition and Enzyme-producing Property of Cellulolytic Microbes in High Altitude Wetland of Zoige, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):399.[doi:10.3724/SP.J.1145.2010.00399]
[3]王蓓,孙庚,罗鹏,等.模拟升温和放牧对高寒草甸土壤微生物群落的影响[J].应用与环境生物学报,2011,17(02):151.[doi:10.3724/SP.J.1145.2011.00151]
 WANG Bei,SUN Geng,LUO Peng,et al.Microbial Communities of Alpine Meadow Soil in the Eastern Qinghai-Tibetan Plateau Subjected to Experimental Warming and Grazing[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):151.[doi:10.3724/SP.J.1145.2011.00151]
[4]刘琳,孙庚,吴彦,等.季节性雪被对青藏高原东缘高寒草甸土壤氮矿化的影响[J].应用与环境生物学报,2011,17(04):453.[doi:10.3724/SP.J.1145.2011.00453]
 LIU Lin,SUN Geng,WU Yan,et al.Effect of Seasonal Snow Cover on Soil Nitrogen Mineralization in an Alpine Meadow on the Eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):453.[doi:10.3724/SP.J.1145.2011.00453]
[5]阳小成,冯坚,吴新卫,等.川西北高寒草甸两种蚯蚓的互作及其对土壤养分的影响[J].应用与环境生物学报,2012,18(02):186.[doi:10.3724/SP.J.1145.2012.00186]
 YANG Xiaocheng,FENG Jian,WU Xinwei,et al.Species Interaction Between Earthworms and Its Effect on Soil Nutrients in an Alpine Meadow, Northwestern Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):186.[doi:10.3724/SP.J.1145.2012.00186]
[6]丁栋,王博禅,陈桂琛,等.一株抗肿瘤放线菌的鉴定及生物活性[J].应用与环境生物学报,2012,18(06):983.[doi:10.3724/SP.J.1145.2012.00983]
 DING Dong,WANG Bochan,CHEN Guichen,et al.Identification and Bioactivity of an Antitumor Actinomycete[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):983.[doi:10.3724/SP.J.1145.2012.00983]
[7]牟成香,孙庚,罗鹏,等.青藏高原高寒草甸植物开花物候对极端干旱的响应[J].应用与环境生物学报,2013,19(02):272.[doi:10.3724/SP.J.1145.2013.00272]
 MOU Chengxiang,SUN Geng,LUO Peng,et al.Flowering Responses of Alpine Meadow Plant in the Qinghai-Tibetan Plateau to Extreme Drought Imposed in Different Periods[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):272.[doi:10.3724/SP.J.1145.2013.00272]
[8]任泽,蒋祖耀,蔡庆华.青藏高原腹地溪流中的氮和有机碳及其相互关系[J].应用与环境生物学报,2013,19(03):532.[doi:10.3724/SP.J.1145.2013.00532]
 REN Ze,JIANG Zuyao,CAI Qinghua.Nitrogen and Organic Carbon and Their Relationship in Streams of Qinghai-Tibet Plateau Hinterland[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):532.[doi:10.3724/SP.J.1145.2013.00532]
[9]李明,郭嘉,石正国,等.春季青藏高原东北部湖泊细菌种类组成[J].应用与环境生物学报,2013,19(05):750.[doi:10.3724/SP.J.1145.2013.00750]
 LI Ming,GUO Jia,SHI Zhengguo,et al.Bacterial Community Structure in Lakes on the Northeastern Qinghai-Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):750.[doi:10.3724/SP.J.1145.2013.00750]
[10]徐波,王金牛,郭海霞,等.青藏高原东缘野生暗紫贝母形态特征对高山环境的适应[J].应用与环境生物学报,2014,20(06):955.[doi:10.3724/SP.J.1145.2014.04045]
 XU Bo,WANG Jinniu,GUO Haixia,et al.Morphological adaptation of wild Fritillaria unibracteata to alpine conditions in the eastern Qinghai-Tibet Plateau[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):955.[doi:10.3724/SP.J.1145.2014.04045]

更新日期/Last Update: 2019-12-25