|本期目录/Table of Contents|

[1]赵小祥,王根绪,杨凯,等.西南亚高山冬瓜杨和峨眉冷杉吸收根特征[J].应用与环境生物学报,2019,25(05):1068-1074.[doi:10.19675/j.cnki.1006-687x.2019.01015]
 ZHAO Xiaoxiang,WANG Genxu,et al.Characteristics of absorptive roots of subalpine Populus purdomii and Abies fabri in Southwest China[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1068-1074.[doi:10.19675/j.cnki.1006-687x.2019.01015]
点击复制

西南亚高山冬瓜杨和峨眉冷杉吸收根特征
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1068-1074
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Characteristics of absorptive roots of subalpine Populus purdomii and Abies fabri in Southwest China
作者:
赵小祥王根绪杨凯杨阳冉飞段宝利类延宝杨燕
1中国科学院成都山地灾害与环境研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
ZHAO Xiaoxiang1 2 WANG Genxu1 YANG Kai1 2 YANG Yang1 RAN Fei1 DUAN Baoli1 LEI Yanbao1 & YANG Yan1**
1Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China 2University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
吸收根形态特征阔叶落叶树针叶树土壤养分
Keywords:
absorptive root morphological trait broad-leaved deciduous tree conifer tree soil nutrient
分类号:
Q945.79
DOI:
10.19675/j.cnki.1006-687x.2019.01015
摘要:
植物的吸收根是植物从土壤中获取资源的重要器官,其快速周转在生态系统碳循环和养分循环中充当着重要作用,而且其形态特征也反映了植物根系对地下资源利用策略的异同. 以海螺沟冰川末端原生演替后期非顶极落叶阔叶林优势物种冬瓜杨(Populus purdomii)和顶极的暗针叶林群落优势物种峨眉冷杉(Abies fabri)作为研究对象,采用土钻法获取两种优势物种的吸收根,分别测定两个优势树种的吸收根形态特征及对应的林下土壤养分含量、温度和湿度. 结果显示:(1)两个森林群落林下的土壤温湿度差异不显著,但峨眉冷杉群落土壤总氮、有效氮、有效磷、铵态氮及硝态氮显著高于冬瓜杨群落;(2)峨眉冷杉的总根长、根长密度、比根长和比表面积显著低于冬瓜杨,平均根直径、总根体积和生物量密度显著高于冬瓜杨;(3)冗余分析表明,冬瓜杨和峨眉冷杉的部分吸收根形态特征和土壤养分存在着正相关性,其中冬瓜杨林下土壤有效氮、总磷分别和冬瓜杨根长密度、根比表面积呈显著正相关,峨眉冷杉林下土壤有效氮和峨眉冷杉吸收根平均直径呈显著正相关. 上述研究结果说明土壤中氮和有效磷养分显著不同可能是造成冬瓜杨和峨眉冷杉吸收根形态特征差异的重要因素. (图3 表1 参46)
Abstract:
The absorptive root is an important part of plants as it extracts nutrients from the soil. The rapid turnover of absorptive roots functions in the carbon and nutrient cycles as a reflection of the root morphological characteristics. Such characteristics of plant roots differ depending on the utilization of underground resources. In this study, Populus purdomii (dominant species of broad-leaved forest as a representative non-climax community) and Abies fabri (dominant species of coniferous forest as a representative climax community) in the retreat terrain of the Hailuogou Glacier were selected as the target species for root samples. All roots were sampled in the field using a soil auger. Morphological characteristics of absorptive roots from both species, soil temperature, soil moisture, and soil nutrient content were all measured under both succession stages. There were no significant differences in soil temperature or moisture between the two types of forest soil; however, soil total nitrogen, available nitrogen, available phosphorus, ammonium nitrogen, and nitrate nitrogen were significantly higher in the A. fabri community than in the P. purdomii community. Total root length, root length density, specific root length, and specific root surface area were all significantly lower in A. fabri than in P. purdomii, but average root diameter, total root volume, and biomass density were significantly higher in A. fabri than in P. purdomii. Positive correlations between some morphological characteristics in both species and soil nutrients were detected by redundancy analysis. In particular, available nitrogen and total phosphorus in the soil of the P. purdomii community positively correlated with root length density and root specific surface area, respectively. Available nitrogen in the soil positively correlated with average root diameter in the A. fabri forest. The results suggested that different root morphological characteristics between different types of forest was mainly due to differences in the available nitrogen and phosphorus in the soil.

参考文献/References:

1 Cheng L, Chen WL, Adams TS, Wei X, Li L, McCormack ML, Deforest JL, Koide RT, Eissenstat DM. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches [J]. Ecology, 2016, 97 (10): 2815-2823
2 Chen WL, Koide RT, Eissenstat DM. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests [J]. J Ecol, 2018, 106 (1): 148-156
3 Liu B Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscularmycorrhizal fungi across 14 coexisting subtropical tree species [J]. New Phytol, 2015, 208 (1): 125-136
4 Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT. Linking root traits to nutrient foraging in arbuscularmycorrhizal trees in a temperate forest [J]. New Phytol, 2015, 208 (1): 114-124
5 TjoelkerJ MG, Craine JM, Wedin D, Reich PB, Tilman D. Linking leaf and root trait syndromes among 39 grassland and savannah species [J]. New Phytol, 2005, 167 (2): 493-508
6 Chen W, Koide RT, Adams TS, Deforest JL, Cheng L, Eissenstat DM. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees [J]. PNAS USA, 2016, 113 (31): 8741-8746
7 Xiang W, Wu W, Tong J, Deng XW, Tian DL, Zhang L, Liu C, Peng CH. Differences in fine root traits between early and late-successional tree species in a Chinese subtropical forest [J]. Forestry, 2013, 86 (3): 343-351
8 Ostonen I, Ttuu M, Helmisaari HS, Lukac M, Borken W, Vanguelova E, Godbold DL, L?hmus K, Zang U, Tedersoo L, Preem JK, Rosenvald K, Aosaar J, Armolaitis K, Frey J, Kabral N, Kukum?gi M, Lepp?lammi-Kujansuu J, Lindroos AJ, Meril? P, Napa ?, N?jd P, Parts K, Uri V, Varik M, Truu J. Adaptive root foraging strategies along a boreal-temperate forest gradient [J]. New Phytol, 2017, 215 (3): 977-991
9 Zadworny M, McCormack M L, Mucha J, Reich PB, Oleksyn J. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient [J]. New Phytol, 2016, 212 (2): 389-399
10 马雪红, 周志春, 张一, 金国庆. 杉木不同家系对异质养分环境的适应性反应差异[J]. 植物生态学报, 2008, 32 (1): 189-196 [Ma XH, Zhou ZC, Zhang Y, Jin GQ. Difference of adaptability among Cunningghamia lanceolata varities to heterogeneous nutrient environment [J]. Chin J Plant Ecol, 2008, 32 (1): 189-196]
11 Li FL, Hu H, McCormlack ML,Feng DF, Liu X, Bao WK. Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests [J]. J Ecol, 2019, 107 (1): 1-12
12 Robinson D, Hodge A, Griffiths BS, Fitter AH. Plant root proliferation in nitrogen-rich patches confers competitive advantage [J]. Proc R Soc B-Biol Sci, 1999, 266 (1418): 431-435
13 Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL. Fine root architecture of nine North American trees [J]. EcolMonogr, 2002, 72 (2): 293-309
14 Xia M, Guo D, Pregitzer KS. Ephemeral root modules in Fraxinus mandshurica [J]. New Phytol, 2010, 188 (4): 1065-1074
15 McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Lepp?lammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New Phytol, 2015, 207 (3): 505-518
16 Espeleta JF, West JB, Donovan LA. Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient [J]. Ecology, 2009, 90 (7): 1773-1787
17 Guo DL, Xia M, Wei X, Chang WJ, Liu Y, Wang ZQ. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytol, 2008, 180 (3): 673-683
18 Guo DL Li H, Mitchell RJ, WX Han, Hendricks JJ, Fahey TJ, Hendrick RL. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods [J]. New Phytol, 2008, 177 (2): 443-456
19 Burton AJ, Jarvey JC, Jarvi MP, Zak DR, Pregitzer KS. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests [J]. Global Change Biol, 2012, 18 (1): 258-266
20 Gill RA, Jackson RB. Global patterns of root turnover for terrestrial ecosystems [J]. New Phytol, 2000, 147 (1): 13-31
21 Ouimette A, Guo DL, Hobbie E, Gu JC. Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders [J]. Plant Soil, 2013, 367 (1-2): 313-326
22 Rewald B, Raveh E, Gendler T, Ephrath JE, Rachmilevitch S. Phenotypic plasticity and water flux rates of Citrus root orders under salinity [J]. J Exp Bot, 2012, 63 (7): 2717-2727
23 Sun T, Mao ZJ .Functional relationships between morphology and respiration of fine roots in two Chinese temperate tree species [J]. Plant Soil, 2011, 346 (1-2): 375-384
24 Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL. Leading dimensions in absorptive root trait variation across 96 subtropical forest species [J]. New Phytol, 2014, 203 (3): 863-872
25 Comas LH, Eissenstat DM. Patterns in root trait variation among 25 co-existing North American forest species [J]. New Phytol, 2009, 182 (4): 919-928
26 Chen WL, Zeng H, Eissenstat DM, GuoDL. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time [J]. Global Ecol Biogeogr, 2013, 22 (7): 846-856
27 Li A, Guo DL, Wang ZQ, Liu HY. Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern [J]. Funct Ecol, 2010, 24 (1): 224-232
28 Comas LH, Bouma TJ, Eissenstat DM. Linking root traits to potential growth rate in six temperate tree species [J]. Oecologia, 2002, 132 (1): 34-43
29 Clark LJ, Whalley WR, Barraclougy PB. How do roots penetrate strong soil? [J]. Plant Soil, 2003, 255 (1): 93-104
30 He L, Tang Y. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China [J]. Catena, 2008, 72 (2): 259-269
31 Lei Y Zhou J, Xiao HF, Duan BL, Wu YH, Korpelainene H, Li CY. Soil nematode assemblages as bioindicators of primary succession along a 120-year-old chronosequence on the Hailuogou Glacier forefield, SW China [J]. Soil Biol Biochem, 2015, 88: 362-371
32 Wang JP, Wu YH, Zhou J, Bing HJ, Sun HY. Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development [J]. Biol Fert Soils, 2016, 52 (6): 825-839
33 Jiang Y, Lei Y, Yang Y, Korpelainene H, Niinemets ?, Li CY. Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence [J]. Soil Biol Biochem, 2018, 118: 207-216
34 杨玉盛, 陈光水, 林鹏, 黄荣珍, 陈银秀, 何宗明. 格氏栲天然林与人工林细根生物量、季节动态及净生产力[J]. 生态学报,2003,23 (9): 1719-1730 [Yang YS, Chen GS, Lin P, Huang RZ, Chen YX, He ZM. Fine root distribution, seasonal pattern and production in a native forest and monoculture plantations in subtropical China [J]. Acta Ecol Sin, 2003, 23 (9): 1719-30]
35 Yang Y, Wang GX, Shen HH, Yang Y, Cui HJ, Liu Q. Dynamics of carbon and nitrogen accumulation and C:N stoichiometry in a deciduous broadleaf forest of deglaciated terrain in the eastern Tibetan Plateau. For Ecol Manag, 2014, 312: 10-18
36 王韦韦, 熊德成, 黄锦学, 黄超超, 杨智杰, 胡双成, 林成芳, 陈光水.亚热带不同演替树种米槠和马尾松细根性状对比研究[J]. 生态学报, 2015, 35 (17): 5813-5821 [Wang WW, Xiong DC, Huang JX, Huang CC, Yang ZJ, Hu SC, Lin CF, Chen GS. Comparison of fine-root traits between two subtropical tree species Pinus massoniana and Castanopsis carlesii differing in succession stages [J]. Acta Ecol Sin, 2015, 35 (17): 5813-5821]
37 马兴华, 于振文, 梁晓芳, 颜红, 史桂萍. 施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响[J]. 应用生态学报, 2006, 17 (4): 630-634 [Ma XH, Yu ZW, Liang XF, Yan H, Shi GP. Effects of nitrogen application rate and its basal-/top-dressing ratio on spatio-temporal variations of soil NO3--N and NH4+-N contents [J]. Chin J Appl Ecol, 2006, 17 (4): 630-634]
38 de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NP, Mara?ón T, Villar R. A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? [J]. J Veg Sci, 2016, 27 (1): 187-199
39 Brassard BW, Chen HYH, Bergeron Y, Paré D. Differences in fine root productivity between mixed- and single-species stands [J]. Funct Ecol, 2011, 25 (1): 238-246
40 Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL. Building roots in a changing environment: implications for root longevity [J]. New Phytol, 2000, 147 (1): 33-42
41 Bolte A, Villanueva I. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Pice aabies (L.) Karst.) [J]. Eur J For Res, 2006, 125 (1): 15-26
42 Majdi H, Damm E, Nylund J E. Longevity of mycorrhizal roots depends on branching order and nutrient availability [J]. New Phytol, 2001, 150 (1): 195-202
43 Barber SA. Soil Nutrient Bioavailability [M]. New York: John Wiley & Sons, 1984
44 苏樑, 宋同清, 杜虎, 曾馥平, 王华, 彭晚霞, 张芳, 张家涌. 喀斯特峰丛洼地不同植被恢复阶段细根生物量, 形态特征及其影响因素[J]. 应用生态学报, 2018, 29 (3): 783-789 [Su L, Song TQ, Du H, Zeng FP, Wang H, Peng WX, Zhang F, Zhang JY. Biomass and morphological characteristics of fine roots and their affecting factors in different vegetation restoration stages in depressions between karst hills [J]. Chin J Appl Ecol, 2018, 29 (3): 783-789]
45 Song MY Yu L, Jiang YL, Lei YB, Korpelainene H, Niinemets ?, Li CY. Nitrogen-controlled intra- and interspecific competition between Populus purdomii and Salix rehderiana drive primary succession in the Gongga Mountain glacier retreat area [J]. Tree Physiol, 2017, 37 (6): 799-814
46 Kronzucker HJ, Siddiqi MY, Glass AD. Conifer root discrimination against soil nitrate and the ecology of forest succession [J]. Nature, 1997, 385 (6611): 59

相似文献/References:

[1]徐波,王金牛,郭海霞,等.青藏高原东缘野生暗紫贝母形态特征对高山环境的适应[J].应用与环境生物学报,2014,20(06):955.[doi:10.3724/SP.J.1145.2014.04045]
 XU Bo,WANG Jinniu,GUO Haixia,et al.Morphological adaptation of wild Fritillaria unibracteata to alpine conditions in the eastern Qinghai-Tibet Plateau[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):955.[doi:10.3724/SP.J.1145.2014.04045]
[2]井大炜,王明友,马海林,等.断根对杨树切口处细根序级结构与形态特征的影响[J].应用与环境生物学报,2018,24(05):1146.[doi:10.19675/j.cnki.1006-687x.2017.07014]
 JING Dawei,WANG Mingyou**,MA Hailin,et al.Effect of root pruning on the architecture and morphological characteristics of different fine root orders in the incision of poplar trees[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1146.[doi:10.19675/j.cnki.1006-687x.2017.07014]
[3]井大炜,王明友,马海林,等.断根对杨树切口处细根根序形态与解剖结构的影响[J].应用与环境生物学报,2018,24(06):1221.[doi:10.19675/j.cnki.1006-687x.2018.08022]
 JING Dawei,et al..Effect of root pruning on the morphological characteristics and anatomical structure among different branch orders of fine root in the incision of poplar[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1221.[doi:10.19675/j.cnki.1006-687x.2018.08022]

更新日期/Last Update: 2019-10-25