|本期目录/Table of Contents|

[1]袁瑱,周志勇,赵洪涛,等.太岳山森林土壤有机碳矿化随温度、湿度和培养时间的变化特征[J].应用与环境生物学报,2019,25(05):1021-1029.[doi:10.19675/j.cnki.1006-687x.2019.01012]
 YUAN Zhen,ZHOU Zhiyong**,ZHAO Hongtao,et al.Variability in soil organic carbon mineralization due to different temperatures,[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1021-1029.[doi:10.19675/j.cnki.1006-687x.2019.01012]
点击复制

太岳山森林土壤有机碳矿化随温度、湿度和培养时间的变化特征
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1021-1029
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Variability in soil organic carbon mineralization due to different temperatures,
作者:
袁瑱周志勇赵洪涛史佳伟张欢
1北京林业大学林学院 北京 100083 2北京自然博物馆 北京 100050
Author(s):
YUAN Zhen1 ZHOU Zhiyong1** ZHAO Hongtao2 SHI Jiawei1 & ZHANG Huan1
1 College of Forestry, Beijing Forestry University, Beijing 100083, China 2 Beijing Museum of Natural History, Beijing 100050, China
关键词:
培养周期土壤湿度土壤温度土壤有机碳矿化温度敏感性
Keywords:
incubation period soil moisture content soil temperature soil organic carbon mineralization temperature sensitivity
分类号:
S714.1
DOI:
10.19675/j.cnki.1006-687x.2019.01012
摘要:
温度和湿度是驱动土壤有机碳矿化的主要环境因子,其驱动作用又会随着培养时间而发生改变. 以山西太岳山地区的油松林(Pinus tabulaeformis Carrière,PF)、辽东栎林(Quercus wutaishansea Mary,QF)和油松辽东栎混交林(MF)3种森林类型为研究对象,把其土壤放在水分含量为30%、60%、90%和温度为5 ℃、10 ℃、20 ℃、30 ℃的水热条件下进行培养,用CO2自动测量系统按照不同的时间间隔测定土壤有机碳矿化速率,整个矿化周期为387 d. 结果显示,土壤有机碳累积矿化量以辽东栎林的相对较高,最高值出现在20 ℃和90%水热条件下培养的辽东栎林,为18.58 μg/g,最低值出现在30 ℃和30%含水量的油松林,为3.95 μg/g. 在前75 d培养时间内,累积碳矿化量随着水热梯度的提高而增加,而在从181-387 d的培养期内,累积碳矿化量则随着温度的升高而降低. 温度对瞬时矿化速率的影响也随着培养时间呈现出了类似的变化规律. 土壤有机碳矿化的温度敏感性以辽东栎林土壤在5 ℃和90%湿度培养时最高,为2.35;以在20 ℃和湿度60%培养的混交林土壤最低,为0.58. 温度敏感系数值(Q10)随着培养时间的延长和温度梯度的增加呈现下降的趋势. 综上所述,在太岳山地区,同样的培养条件下,以辽东栎林的土壤碳矿化量最高;在培养前期,水热互作对土壤有机碳矿化有正的驱动作用,而在培养后期,温度对土壤有机碳矿化的调控作用明显减弱. (图4 表4 参41)
Abstract:
Temperature and moisture content are two important environmental variables controlling soil organic carbon (SOC) mineralization, but their roles also vary as incubation time increases. Three forest types, Pinus tabulaeformis (PF), Quercus wutaishansea (QF), and the mixed P. tabulaeformis and Q. wutaishansea forest, were selected to study SOC mineralization. Soil samples were incubated under twelve incubation conditions comprising three different degrees of soil moisture content (SMC; 30%, 60%, and 90%) and four temperatures (5 ℃, 10 ℃, 20 ℃, and 30 ℃) for a period of 387 days. The instantaneous rate of SOC mineralization was automatically monitored using a CO2 measurement system at different time intervals. The study results indicated that QF soil presented the highest amount of cumulative mineralized carbon (18.58 μg/g) when incubated at 20 ℃ with 90% SMC, while PF soil presented the lowest value of cumulative mineralized carbon (3.95 μg/g) when incubated at 30 ℃ with 30% SMC. The amount of cumulative mineralized SOC increased with increased incubation temperature and moisture content during the first 75 days, but during the 180th day and 387th day, temperature decreased the amount of cumulative mineralized SOC. A similar trend in the instantaneous rate of SOC mineralization was also observed with changing incubation temperatures and time. Soil organic carbon mineralization responded more sensitively to variations in incubation temperature in QF soil. Temperature sensitivity (Q10) was highest (2.35) in QF soil when incubated at 5 ℃ with 90% SMC, and was lowest (0.58) in MF soil incubated at 20 ℃ with 60% SMC. In general, under similar incubation conditions, QF soil had a comparatively higher value of SOC mineralization than that of either PF or MF soil. During the early incubation period, temperature and moisture positively interacted to accelerate SOC mineralization. However, a lower amount of SOC mineralization was detected for soil samples incubated at 30 ℃ during the late incubation period.

参考文献/References:

1. Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the world [J]. Soil Sci Soc Am J, 1993, 57 (1): 192-194
2. Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool [J]. Carbon Manage, 2014, 5 (1): 81-91
3. Post WM, Izaurralde RC, Mann LK, Bliss N. Monitoring and verifying changes of organic carbon in soil [M]//Rosenberg NJ, Roberto CL. Storing Carbon in Agricultural Soils: A Multi-Purpose Environmental Strategy. Dordrecht: Springer, 2001: 73-99
4. 黄锦学, 熊德成, 刘小飞, 杨智杰, 谢锦升, 杨玉盛. 增温对土壤有机碳矿化的影响研究综述[J]. 生态学报, 2017, 37 (1): 12-24 [Huang JX, Xiong DC, Liu XF, Yang ZJ, Xie JS, Yang YS. Effect of warming on soil organic carbon mineralization: a review [J]. Acta Ecol Sin, 2017, 37 (1): 12-24]
5. 徐洪文, 卢妍. 土壤碳矿化及活性有机碳影响因子研究进展[J]. 江苏农业科学, 2014, 42 (10): 4-7 [Xu HW, Lu Y. Research progress on soil carbon mineralization and factors affecting active organic carbon [J]. Jiangsu Agric Sci, 2014, 42 (10): 4-7]
6. Knorr W, Prentice IC, House JI, Holland EA. Long-term sensitivity of soil carbon turnover to warming [J]. Nature, 2005, 433 (7023): 298-301
7. Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM. Sensitivity of organic matter decomposition to warming varies with its quality [J]. Glob Change Biol, 2008, 14 (4): 868-877
8. Schimel J, Schaeffer SM. Microbial control over carbon cycling in soil [J]. Front Microbiol, 2012, 3: 348
9. Herrmann S, Kahl T, Bauhus J. Decomposition dynamics of coarse woody debris of three important central European tree species [J]. For Ecos, 2015, 2 (1): 27
10. Cooper JM, Burton D, Daniell TJ, Griffiths BS, Zebarth BJ. Carbon mineralization kinetics and soil biological characteristics as influenced by manure addition in soil incubated at a range of temperatures [J]. Eur J Soil Biol, 2011, 47 (6): 392-399
11. 贾俊仙, 蔚耀洲, 张健, 许剑敏, 张亚丽, 赵艳, 洪坚平. 土壤水分对半干旱区石灰性土壤有机碳矿化的影响[J]. 灌溉排水学报, 2017, 36 (9): 62-68 [Jia JX, Wei YZ , Zhang J, Xu JM, Zhang YL, Zhao Y, Hong JP. Effect of soil moisture on mineralization of soil carbonin calcareous soils in the semi-arid regions of China [J]. J Irrig Drain, 2017, 36 (9): 62-68]
12. Das S, Richards BK, Hanley KL, Krounbi L, Walter MF, Walter MT, Steenhuis TS, Lehmann J. Lower mineralizability of soil carbon with higher legacy soil moisture [J]. Soil Biol Biochem, 2019, 130: 94-104
13. Taggart M, Heitman JL, Shi W, Vepraskas M. Temperature and water content effects on carbon mineralization for Sapric soil material [J]. Wetlands, 2012, 32 (5): 939-944
14. 杨开军, 杨万勤, 贺若阳, 庄丽燕, 李志杰, 聂富育, 王壮, 徐振锋. 川西亚高山3种典型森林土壤碳矿化特征[J]. 应用与环境生物学报, 2017, 23 (5): 83-88 [Yang KJ, Yang WQ, He RY, Zhuang LY, Li ZJ, Nie FY, Wang Z, Xu ZF. Soil organic carbon mineralization characteristics of three dominant subalpine forests in western Sichuan, China [J]. Chin J Appl Environ Biol, 2017, 23 (5): 83-88]
15. Chen SQ, Lü S, Gao M, Huang R. Characteristics of soil organic carbon and mineralization with different stands in Jinyun Mountain [J]. Environ Sci, 2019, 40 (2): 953-960
16. Fang C, Smith P, Moncrieff JB, Smith JU. Similar response of labile and resistant soil organic matter pools to changes in temperature [J]. Nature, 2005, 433 (7021): 57-59
17. Larionova AA, Maltseva AN, Gerenyu VOLD, Kvitkina AK, Bykhovets SS, Zolotareva BN, Kudeyarov VN. Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment [J]. Eurasian Soil Sci, 2017, 50 (4): 422-431
18. 陈平, 赵博, 闫子超, 杨璐, 赵秀海, 张春雨. 太岳山油松人工林土壤呼吸对模拟氮沉降刺激的短期响应[J]. 生态学报, 2018, 37 (22): 8184-8193 [Chen P, Zhao B, Yan ZC, Yang L, Zhao XH, Zhang CY. Short-term response of soil respiration to simulated nitrogen deposition in a Pinus tabulaeformis plantation on Taiyue Mountain, China [J]. Acta Ecol Sin, 2018, 37 (22): 8184-8193]
19. Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter [M]//Page AL, Miller RH, Keeney DR. Methods of Soil Analysis. Madison: American Society of Agronomy and Soil Science Society of American, 1982: 101-129
20. 何念鹏, 温学发, 于贵瑞, 孙晓敏, 王秋凤, 王晶苑. 一种室内土壤微生物呼吸连续测定装置: 中国, CN102586097A [P]. 2012-07-18 [2019-02-21]. http://dbpub.cnki.net/grid2008/dbpub [He NP, Wen XF, Yu GR, Sun XM, Wang QF, Wang JY. The utility model relates to an indoor soil microbial respiration continuous measurement device: China, CN102586097A [P]. 2012-07-18 [2019-02-21]. http://dbpub.cnki.net/grid2008/dbpub]
21. Lenton TM, Huntingford C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model [J]. Glob Change Biol, 2003, 9 (10): 1333-1352
22. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, K?gel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Steve S, Trumbore SE. Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478 (7367): 49-56
23. Prescott CE, Grayston SJ. Tree species influence on microbial communities in litter and soil: current knowledge and research needs [J]. For Ecol Manage, 2013, 309: 19-27
24. Tu Y, You Y M, Sun J X. Effects of forest floor litter and nitrogen addition on soil microbial biomass C and N and microbial activity in a mixed Pinus tabulaeformis and Quercus liaotungensis forest stand in Shanxi Province of China [J]. Chin J Appl Ecol, 2012, 23 (9): 2325-2331
25. Wetterstedt J?M, Persson T, ?gren GI. Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates [J]. Glob Change Biol, 2010, 16 (6): 1806-1819
26. Paterson E, Sim A. Soil-specific response functions of organic matter mineralization to the availability of labile carbon [J]. Glob Change Biol, 2013, 19 (5): 1562-1571
27. Arnold C, Ghezzehei TA, Berhe AA. Decomposition of distinct organic matter pools is regulated by moisture status in structured wetland soils [J]. Soil Biol Biochem, 2015, 81: 28-37
28. Moyano FE, Manzoni S, Chenu C. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models [J]. Soil Biol Biochem, 2013, 59: 72-85
29. Giardina CP, Ryan MG, Hubbard RM, Binkley D. Tree species and soil textural controls on carbon and nitrogen mineralization rates [J]. Soil Sci Soc Am J, 2001, 65 (4): 1272-1279
30. Fissore C, Giardina CP, Kolka RK. Reduced substrate supply limits the temperature response of soil organic carbon decomposition [J]. Soil Biol Biochem, 2013, 67: 306-311
31. Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions [J]. Soil Biol Biochem, 2013, 58: 115-126
32. Waldrop MP, Firestone MK. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities [J]. Oecologia, 2004, 138 (2): 275-284
33. Alvarez G, Shahzad T, Andanson L, Bahn M, Wallenstein MD, Fontaine S. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming [J]. Glob Change Biol, 2018, 24 (9): 4238-4250
34. Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology [J]. Nat Geosci, 2010, 3 (5): 336
35. 左宜平, 张馨月, 曾辉, 王娓. 大兴安岭森林土壤胞外酶活力的时空动态及其对潜在碳矿化的影响[J]. 北京大学学报 (自然科学版), 2018, 54 (6): 1311-1324 [Zuo YP, Zhang XY, Zeng H, Wang W. Spatiotemporal dynamics of soil extracellular enzyme activity and its influence on potential mineralization rate of soil organic carbon in forests of Daxing’an Mountain Range [J]. Acta Sci Nature Univ. Pekinensis, 2018, 54 (6): 1311-1324]
36. Guo J, Yang Y, Chen G, Xie J, Yang Z. Carbon mineralization of Chinese fir (Cunninghamia lanceolata) soils under different temperature and humidity conditions [J]. Acta Ecol Sin, 2014, 34 (1): 66-71
37. Rey A, Petsikos C, Jarvis PG, Grace J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions [J]. Eur J Soil Sci, 2005, 56 (5): 589-599
38. Curiel Yuste J, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture [J]. Glob Change Biol, 2007, 13 (9): 2018-2035
39. Ding CH, Wang LG, Tang J, Ci E, Xie DT. Effects of soil moisture and temperature variations on organic carbon mineralization of purple soil in the hydro-fluctuation belt of the Three Gorges Reservoir [J]. Soils, 2016, 37 (7): 2763-2769
40. Tang ZX, Sun XL, Luo ZK, He NP, Sun JX. Effects of temperature, soil substrate, and microbial community on carbon mineralization across three climatically contrasting forest sites [J]. Ecol Evol, 2018, 8 (2): 879-891
41. Liu HS, Li LH, Han XG, Huang JH, Sun JX, Wang HY. Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors [J]. Appl Soil Ecol, 2006, 32 (3): 284-292
42.

相似文献/References:

[1]刘保新,汪金松,康峰峰,等.太岳山油松人工林土壤呼吸对抚育强度的响应[J].应用与环境生物学报,2012,18(01):17.[doi:DOI: 10.3724/SP.J.1145.2012.00017]
 LIU Baoxin,WANG Jinsong,KANG Fengfeng,et al.Response of Soil Respiration in Pinus tabulaeformis Plantation to Tending Intensities in the Taiyue Mountain, China[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):17.[doi:DOI: 10.3724/SP.J.1145.2012.00017]
[2]左强,何怀江,赵秀海.改变碳源输入对蛟河红松阔叶混交林土壤呼吸的影响[J].应用与环境生物学报,2015,21(06):1136.[doi:10.3724/SP.J.1145.2015.04035]
 ZUO Qiang,HE Huaijiang,ZHAO Xiuhai.Influence of carbon input changes on the soil respiration in a mixed broadleaved-Korean pine forest in western foothill of Changbai Mountain[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):1136.[doi:10.3724/SP.J.1145.2015.04035]
[3]张艳如,陈秋文,孙美美,等.黄土丘陵区4种植被类型土壤呼吸季节及年际变化[J].应用与环境生物学报,2018,24(04):729.[doi:10.19675/j.cnki.1006-687x.2017.09027]
 ZHANG Yanru,CHEN Qiuwen,et al.Seasonal and interannual variation of soil respiration in four vegetation types in the loess hilly region[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):729.[doi:10.19675/j.cnki.1006-687x.2017.09027]
[4]袁瑱 周志勇** 赵洪涛 史佳伟 张欢.太岳山森林土壤有机碳矿化随温度、湿度和培养时间的变化特征*[J].应用与环境生物学报,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2019.01012]
 YUAN Zhen,ZHOU Zhiyong**,ZHAO Hongtao,et al.Variability of SOC mineralization by the incubation temperature, moisture and the period of time for forest ecosystems of Taiyue mountain*[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1.[doi:10.19675/j.cnki.1006-687x.2019.01012]

更新日期/Last Update: 2019-10-25