|本期目录/Table of Contents|

[1]张振超,王金牛,孙建,等.土壤温室气体测定方法研究进展[J].应用与环境生物学报,2019,25(05):1228-1243.[doi:10.19675/j.cnki.1006-687x.2019.01010]
 Differences across a diverse range of methods cause many uncertainties for soil greenhouse gas measurement. Therefore,a comprehensive comparison and evaluation of available methods is needed to help improve the accuracy of soil greenhouse gas measurement.A review of methods for measuring soil greenhouse gases[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1228-1243.[doi:10.19675/j.cnki.1006-687x.2019.01010]
点击复制

土壤温室气体测定方法研究进展
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1228-1243
栏目:
综述
出版日期:
2019-10-31

文章信息/Info

Title:
A review of methods for measuring soil greenhouse gases
作者:
张振超王金牛孙建蒋海波魏天兴
1北京林业大学水土保持学院 北京 100083 2中国科学院地理科学与资源研究所 北京 100101 3中国科学院成都生物所 成都 610041
Author(s):
Differences across a diverse range of methods cause many uncertainties for soil greenhouse gas measurement. Therefore a comprehensive comparison and evaluation of available methods is needed to help improve the accuracy of soil greenhouse gas measurement
1 School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 2 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 3Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
土壤温室气体测量方法原理气体检测适用性不确定性
Keywords:
soil greenhouse gas measurement method principle gas detection applicability uncertainty
分类号:
S151.9 : P467
DOI:
10.19675/j.cnki.1006-687x.2019.01010
摘要:
土壤温室气体测量方法复杂多样,不同方法之间的差异性为土壤温室气体测量带来较多不确定性,综合评估比对各类方法有助于提高测量土壤温室气体的准确性,进而对研究温室气体源汇机理、制定排放清单和减排措施具有重要意义. 本文通过对国内外温室气体测量研究文献的梳理,总结常用的土壤温室气体观测方法:箱法/碱液吸收法、箱法/气相色谱法、箱法/吸收光谱法、微气象学法、土壤浓度廓线法、稳定同位素法等,系统阐述常用土壤温室气体测量方法的原理、优缺点、不确定性以及改进历程,分析其使用特点与范围. 几乎每种方法都有其优势和局限性,箱法操作简单,目前应用较为广泛,但密闭静态箱对观测有一定的扰动,而微气象法对观测下垫面均有极为严格的要求,同位素法更精确,但价格昂贵,难以广泛使用. 目前传统测量方法存在实验过程复杂、研究成本高、精度低、不可原位、参数有限等问题,未来土壤温室气体测量的仪器更注重与新技术的结合使用,例如连续量子级联合激光器(CW-QCL)与可调谐二极管激光吸收光谱技术(TDLAS)及波长调制技术(WMS)的结合,向着原位无损、长时间、全参数、高精度、便携式、一体化、自动化和远程操控等方向发展. (图9 表3 参180)
Abstract:
Differences across a diverse range of methods cause many uncertainties for soil greenhouse gas measurement. Therefore, a comprehensive comparison and evaluation of available methods is needed to help improve the accuracy of soil greenhouse gas measurement. The accurate measurement of greenhouse gas emissions from the soil is necessary for a better understanding of their source and sink mechanisms, formulating an emission inventory, and implementing emission reduction measures. Based on the principles of the assays, common soil greenhouse gas measurement methods were divided into box/alkali absorption methods, box/gas chromatography, box/absorption spectrometry, micro-meteorology methods, soil concentration profile methods, and stable isotope methods.The principle, advantages and disadvantages, uncertainties, application scope, and development history of the different measurement methods for soil greenhouse gases, identified from a search of the literature, were systematically discussed. Almost every method has advantages and limitations. For example, the box method is simple to operate and widely used at present; however, this closed static box method makes certain observations difficult. Almost all the micrometeorological methods have extremely strict requirements for the underlying surface. Although the isotope method is more accurate, it is too expensive to be widely used. Traditional measurement methods have many problems, such as a complicated experimental process, high cost, low precision, inability to be used in situ, and limited measurable parameters. Future developments of soil greenhouse gas measurement instruments should focus on combinations of new technology, such as the Continuous Wave-Quantum Cascade Laser(CW-QCL) combined with the Tunable Diode Laser Absorption Spectroscopy(TDLAS) and Wavelength Modulation Spectroscopy (WMS) techniques. New instruments should be able to perform in situ measurements over a long period of time, measure all parameters, and be precise and portable; moreover, they should be capable of integration, automation, and remote control.

参考文献/References:

1. Landman W. Climate change 2007: the physical science basis [J]. South Afr Geogr J Being Rec Proc South Afr GeogrSoc, 2007, 92 (1): 86-87
2. Working Group I of the IPCC. Climate change 2013: the physical science basis [J]. Contr Work, 2013, 43 (22): 866-871
3. IPCC. Special report on global warming of 1. 5 ℃ [M]. UK: Cambridge University Press, 2018
4. 秦大河, Stocker Thomas. IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014, 10 (1): 1-6 [Qin DH, Thomas S. Highlights of the IPCC working group Ⅰ fifth assessment report [J]. Adv Clim Change Res, 2014, 10 (1): 1-6]
5. Richard HM, Jae AE, Kathy AH, Martin RM, Steven KR, Detlef PV, Timothy RC, SeitaE, MikikoK, Tom K, Gerald AM, John FM, NebojsaN, Keywan R, Steven JS, Ronald JS, Allison MT, John PW, Thomas JW. The next generation of scenarios for climate change research and assessment [J]. Nature, 2010, 463 (7282): 747
6. 李海防, 夏汉平, 熊燕梅, 张杏锋. 土壤温室气体产生与排放影响因素研究进展[J]. 生态环境, 2007, 16 (6): 1781-1788 [Li HF, Xia HP, Xiong MY, Zhang XF. Mechanism of greenhouse gases fluxes from soil and its controlling factors: a review [J]. Ecol Environ, 2007, 16 (6): 1781-1788]
7. 方精云. 全球生态学: 气候变化与生态响应[M]. 北京: 高等教育出版社, 2000 [Fang JY. Global Ecology: Climate Change and Ecological response [M]. Beijing: Higher Education Press, 2000]
8. 王明星. 大气化学[M]. 2版. 北京: 气象出版社, 1999 [Wang MX. Atmospheric Chemistry [M]. 2nd ed. Beijing: Meteorological Press, 1999]
9. 王庚辰. 陆地生态系统温室气体排放(吸收)测量方法简评[J]. 气候与环境研究, 1997, 2 (3): 251-263 [Wang GC. A view on measurement methods for greenhouse gasses emission from terrestrial ecosystem [J]. Clim Environ Res, 1997, 2 (3): 251-263]
10. Blackmer AM, Bremner JM. Gas Chromatographic analysis of soil atmospheres1 [J]. Soil Sci Soc Am J, 1977, 41 (5): 908-912
11. Jukka P, Pasi K, Hannu I, Kari M, Timo V, Sini N, Annalea L, Tuula L, Micaela M, Mari P, Ivan J, Jorge CY, Jose MG, Sascha R, Jens AS, Katheleen S, Werner K, Geir S, Petti Hari. Comparison of different chamber techniques for measuring soil CO2 efflux [J]. Agric For Meteorol, 2004, 123 (3): 159-176
12. Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation [J]. Biogeosciences, 2006, 3 (4): 571-583
13. 贾俊香, 熊正琴. 典型菜地土壤剖面N2O、CH4与CO2分布特征研究[J]. 中国生态农业学报, 2015, 23 (12): 1536-1543 [Jia J, Xiong Z. Distribution characteristics of nitrous oxide, methane and carbon dioxide along soil profile in typical vegetable fields [J]. Chin J Eco-agric, 2015, 23 (12): 1536-1543]
14. 王微. 温室气体及其稳定同位素排放通量测量技术和方法研究 [D]. 合肥: 中国科学技术大学, 2013 [Wang W. Study of Techniques and methods for measuring emissions of greenhouse gases and stable isotopes [D]. Hefei: University of Science and Technology of China, 2013]
15. 郑泽梅, 于贵瑞, 孙晓敏, 曹广民, 王思跃, 杜明远. 涡度相关法和静态箱/气相色谱法在生态系统呼吸观测中的比较[J]. 应用生态学报, 2008, 19 (2): 290-298 [Zheng ZM, Yu GR, Sun XM, Cao GM, Wang SY, Du MY. Comparison of eddy covariance and static chamber/gas chromatogram methods in measuring ecosystem respiration [J]. Chin J Appl Ecol, 2008, 19 (2): 290-298]
16. Hargreaves K, Wienhold F, Klemedtsson L, Arah JRM, Beverland IJ, Fowler D. Measurement of nitrous oxide emission from agricultural land using micrometeorological methods [J]. Atm Environ, 1996, 30 (10): 1563-1571
17. Smith KA, Scott A, Galle B, Klemedtsson L. Use of a long-path infrared gas monitor for measurement of nitrous oxide flux from soil[J]. J Geoph Res Atm, 1994, 99 (8): 16585-16592
18. Laubach J, Kelliher FM. Measuring methane emission rates of a dairy cow herd (ii): results from a Backward-lagrangian Sstochastic Model [J]. Agric For Meteorol, 2005, 129 (3): 137-150
19. Lavigne MB, Ryan MG, Anderson DE, Baldocchi DD, Crill PM, Fitzjarrald DR. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites [J]. J Geoph Res, 1997, 102 (24): 28977-28985
20. Law BE, Williams M, Anthoni PM, Baldocchi DD, Unsworth MH. Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit [J]. Globle Change Biol, 2010, 6 (6): 613-630
21. Steduto P, ?etink?kü ?, Albrizio R, Kanber R. Automated closed-system canopy-chamber for continuous field-crop monitoring of CO2 and H2O fluxes [J]. Agric For Meteorol, 2002, 111 (3): 171-186
22. 顾帅, 周凌晞, 刘立新, 王木林, 温民. 静态箱-气相色谱法CO2和CH4通量观测的质控方法研究[J]. 气象, 2010, 36 (8): 87-91 [Gu S, Zhou LX, Liu LX, Wang ML, Wen M. Research of quality control measures in greenhouse gas flux observation using static closed chamber-GC technique [J]. Meteorol Monthly, 2010, 36 (8): 87-91]
23. 杜睿, 王庚辰, 吕达仁, 孔琴心, 刘广仁, 万小伟. 箱法在草地温室气体通量野外实验观测中的应用研究[J]. 大气科学, 2001, 25 (1): 61-70 [Du R, Wang GC, Lv DR, Kong QX, Liu GR, Wan XW. A study of chamber method for in-site measurements of greenhouse gase emission from grassland [J]. Chin J Atm Sci, 25 (1): 61-70]
24. Davidson EA, Savage K, Verchot LV, Navarro R. Minimizing artifacts and biases in chamber-based measurements of soil respiration [J]. Agric For Meteorol, 2002, 113 (1): 21-37
25. 王跃思, 刘广仁, 王迎红, 孙扬, 薛敏. 一台气相色谱仪同时测定陆地生态系统CO2、CH4和N2O排放[J]. 环境污染治理技术与设备, 2003, 4 (10): 86-92 [Wang YS, Liu GR, Wang YH, Sun y, Xue M. Simultaneous measurement of CO2, CH4 and N2O emission from terrestrial ecosystem with one improved gas chromatography [J]. Technol Equip EnvironPollutContr, 2003, 4 (10): 86-92]
26. Denmead OT. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere [J]. Plant Soil, 2008, 309 (1): 5-24
27. Flesch TK, Wilson JD, Harper LA, Crenna BP. Estimating gas emissions from a farm with an inverse-dispersion technique [J]. Atm Environ, 2005, 39 (27): 4863-4874
28. Schiller CL, Hastie DR. Nitrous oxide and methane fluxes from perturbed and unperturbed boreal forest sites in northern Ontario [J]. J Geophys Res Atm, 1996, 101 (17): 22767-22774
29. 石飞飞, 王维汉. 静态箱研究进展及设施菜地气体采集静态箱研制构想[J]. 安徽农业科学, 2016, 44 (24): 226-227 [Shi FF, Wang WH. Research review of static box and development conception of greenhouse vegetable gas collection static box [J]. J Anhui AgricSci, 2016, 44 (24): 226-227]
30. Veldkamp E, Keller M. Nitrogen Oxide Emissions From a banana plantation in the humid tropics [J]. J Geophys Res Atm, 1997, 102 (13): 15889
31. Smith KA, Clayton H, Arab JRM, Christensen S, Galle B. Micrometeorological and chamber methods for measurement of nitrous oxide fluxes between soils and the atmosphere: overview and conclusions [J]. J Geophys Res Atm, 1994, 99 (8): 16541
32. Flessa H, D?rsch P, Beese F. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany [J]. J Geophys Res Atm, 1995, 100 (11): 23115-23124
33. Mosier AR, Morgan JA, King JY, Lecain D, Milchunas DG. Soil-atmosphere exchange of CH4, CO2, NOx, and N2O in the Colorado shortgrass steppe under elevated CO2 [J]. Plant Soil, 2002, 240 (2): 201-211
34. Meyer M, Galbally IE, Wang Y, Weeks IA. Two automatic chamber techniques for measuring soil-atmosphere exchanges of trace gases and results of their use in the oasis field experiment [R]. Aspendale: CSIRO Atmospheric Research, 2001
35. Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management [J]. Plant Soil, 1997, 196 (1): 7-14
36. 王迎红. 陆地生态系统温室气体排放观测方法研究、应用及结果比对分析[D]. 北京: 中国科学院大气物理研究所, 2005 [Wang YH. Chamber method measurement of greenhouse gas emissions from typical terrestrial ecosystems of China: method research, application and results discussion [D]. Beijing: Institute of atmospheric physics, Chinese Academy of Science, 2005]
37. 李志安, 邹碧, 曹裕松, 刘剑, 温达志. 地面氧化亚氮排放静态箱测定技术[J]. 生态环境学报, 2002, 4 (4): 413-416 [Li ZA, Zou B, Cao YS, Liu J, Wen DZ. Technique of static chamber in determining nitrous oxide emission from land surface [J]. Soil Environ Sci, 2002, 4 (4): 413-416]
38. Levine JS, Winstead EL, Parsons DAB, Scholes MC, Scholes RJ, Lii WRC. Biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) from savannas in south Africa: the impact of wetting and burning [J]. J Geoph Res Atm, 1996, 101 (19): 23689-23697
39. Rolston DE, Duxbury JM, Harper LA. Processes for production and consumption of gaseous nitrogen oxides in soil [J]. Agric Ecos Eff Trace Gas Global Clim Change, 1993
40. Ma YC, Li Y, Ma YC, Sun LY, Zhang, XX, Bo Y, Wang, JY, Yin B, Yan XY, Xiong ZQ. Mitigation of nitrous oxide emissions from paddy soil under conventional and no-till practices using nitrification inhibitors during the winter: wheat-growing season [J]. Biol Fert Soils, 2013, 49 (6): 627-635
41. Yan X, Akimoto H, Ohara T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in east, southeast and south Asia [J]. Global Change Biol, 2010, 9 (7): 1080-1096
42. Zhang C, Liu J, Zhou Y, Mu Y, Zhang Y. Nitrous oxide emissions from maize-wheat field during four successive years in the north China plain [J]. Biogeosci Disc, 2013, 10 (10): 18337-18358
43. Louise B, Ralf K, David G, Klaus BB, Renee B, Christoph H, Daniel VM. Nitrous oxide emissions from a cropped soil in a semi-arid climate [J]. Global Change Biol, 2010, 14 (1): 177-192
44. Yao ZS, Zheng XH, Xie BH, Liu, CY, Mei, BL, Dong HB, Butterbach-Bahl K, Zhu, JG. Comparison of manual and automated chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land [J]. Atm Environ, 2009, 43 (11): 1888-1896
45. Law BE, Ryan MG, Anthoni PM. Seasonal and annual respiration of a ponderosa pine ecosystem [J]. Global Change Biol, 2010, 5 (2): 169-182
46. 杜睿, 王庚辰, 吕达仁, 万晓伟, 孔琴心. 静态箱法原位观测草原CO2通量的探讨[J]. 生态学报, 2002, 22 (12): 2167-2174 [Du R. Wang GC, Lv DR, Wan XW, Kong QX. In situ measurements of CO2 flux in grassland ecosystem by closed chamber technique [J]. Acta Ecol Sin, 2002, 22 (12): 2167-2174]
47. Liang NS, Nakadai T, Hirano T, Qu LY, Koike TS, Fujinuma YS, Inoue G. In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg. ) forest [J]. Agric For Meteorol, 2004, 123 (1): 97-117
48. 王明星. 中国稻田甲烷排放[M]. 北京: 科学出版社, 2001 [Wang MX. Methane Emissions from Chinese Rice Fields [M]. Beijing: Science Press, 2001]
49. 郝志鹏, 董红敏, 陶秀萍, 黄宏坤. 铝箔复合膜气袋对温室气体吸附性的试验研究[J]. 农业工程学报, 2005, 21 (11): 130-132 [Hao ZP, Dong HM, Tao XP, Huang HK. Experimental study on the absorbability of greenhouse gases by gas-bages made of aluminum foil composite film [J]. Trans CSAE, 2005, 21 (11): 130-132]
50. 林茂. 土壤温室气体通量测定方法的比较和评价[J]. 湖南农业科学, 2012, 12 (9): 44-46 [Lin M. Comparison and evaluation of fluxes measurement methods for soil greenhouse gas [J]. Hunan Agric Sci, 2012, 12 (9): 44-46]
51. Nay SM, Mattson KG, Bormann BT. Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus [J]. Ecology, 1994, 75 (8): 2460-2463
52. 高志岭, 陈新平, 张福锁. 农田土壤N2O排放的连续自动测定方法[J]. 植物营养与肥料学报, 2005, 11 (1): 68-74 [Gao ZL, Chen XP, Zhang FS. Continuous-automatic method for measuring N2O emission from agricultural soil [J]. Plant Nutr Fertil Sci, 2005, 11 (1): 68-74]
53. Kroon PS, Hensen A, Bulk WCMVD, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers [J]. Nutr Cycl Agric, 2008, 82 (2): 175-186
54. Pedersen AR, Petersen SO, Vinther FP. Stochastic diffusion model for estimating trace gas emissions with static chambers [J]. Soil Sci Soc AmJ, 2001, 65 (1): 49-58
55. Gao F, Yates SR. Simulation of enclosure-based methods for measuring gas emissions from soil to the atmosphere [J]. J Geoph Res Atm, 1999, 103 (20): 26127-26136
56. 石书静, 高志岭. 不同通量计算方法对静态箱法测定农田N2O排放通量的影响[J]. 农业环境科学学报, 2012, 11 (10): 2060-2065 [Shi SJ, Gao ZL. Impact of different flux-calculation methods on the N2O fluxes from cropland measured with static chamber technique [J]. J Agro-Environ Sci, 2012, 11 (10): 2060-2065]
57. Hutchinson GL, Mosier AR. Improved soil cover method for field measurement of nitrous oxide fluxes [J]. Soil Sci Soc Am J, 1981, 45: 311-316
58. 姚玉刚. 两种方法测定华北平原农田生态系统净碳交换量的研究[D]. 合肥: 安徽农业大学, 2007 [Yao YG. Study on agro-ecosystem NEE using eddy covariance and static chamber/gas chromatogram methods in north China plain [D]. Hefei: Anhui Agricultural University, 2007]
59. Yin MH, Tong YA, Gao PC, Ju XT. Coupled effects of straw and nitrogen management on N2O and CH4 emissions of rained agriculture in northwest China [J]. Atm Environ, 2017, 157: 156-166
60. Hu XK, Su F, Ju XT, Gao B, Oenema O, Christie P, Huang BX, Jiang RF, Zhang FS. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes[J]. Environ Poll, 2013, 176 (5): 198-207
61. Gao B, Ju X, Su F, Meng QF, Oenema O, Christie P, Chen XP, Zhang FS. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the north China plain: a two-year field study [J]. Sci Tot Environ, 2014, 472: 112-124
62. 刘敏, 张翀, 巨晓棠, 苏芳, 陈新平, 江荣风. 箱体结构及计算方法对夏玉米农田N2O排放测定结果的影响[J]. 农业环境科学学报, 2018, 37 (6): 1284-1290 [Liu M, Zhang C, Ju XT, Su F, Chen XP, Jiang RF. Effects of chamber size and calculation method on N2O emissions during the summer maize growing season [J]. J Agro-Environ Sci, 2018, 37 (6): 1284-1290]
63. Venterea RT. Simplified method for quantifying theoretical underestimation of chamber-based trace gas fluxes [J]. J EnvironQual, 2010, 39 (1): 126-135
64. Bekku Y, Koizumi H, Oikawa T, Lwaki H. Examination of four methods for measuring soil respiration [J]. Appl Soil Ecol, 1997, 5 (3): 247-254
65. Denmead OT. Chamber systems for measuring nitrous oxide emission from soils in the field [J]. Soil Sci Soc Am J, 1979, 42 (2): 606
66. Fang C, Moncrieff JB. An improved dynamic chamber technique for measuring CO2 efflux from the surface of soil [J]. Funct Ecol, 1996, 10 (2): 297-305
67. Matthias AD, Blackmer AM, Bremner JM. A simple chamber technique for field measurement of emissions of nitrous oxide from soils [J]. J Envion Qual, 1980, 9 (2): 251-256
68. 潘冬荣, 孙斌. 温室气体及常用研究方法[J]. 甘肃科技, 2017, 33 (7): 54-56 [Pan DR, Sun B. Greenhouse gases and common research methods [J]. Gansu Sci Technol, 2017, 33 (7): 54-56]
69. Witkamp M. Rates of carbon dioxide evolution from the forest floor [J]. Ecology, 1966, 47 (3): 492-494
70. Page AL, Miller RH, Keeney DR. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties [M]. Madison: Soil Science Society of America, Inc., 1982
71. Yim MH, Joo SJ, Nakane K. Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods [J]. For Ecol Manage, 2002, 170 (1): 189-197
72. 杨晶, 黄建辉, 李鑫, 杜丽华, 詹学明, 李凌浩. 农牧交错区不同植物群落土壤呼吸的日动态观测与测定方法比较[J]. 植物生态学报, 2004, 28 (3): 318-325 [Yang J, Huang JH, Li X, Du LH, Zhan XM, Li LH. The diurnal dynamic patterns of soil respiration for different plant communities in the agro-pastoral ecotone with reference to different measuring methods [J]. Act Phyt Sin, 2004, 28 (3): 318-325]

更新日期/Last Update: 2019-10-25