|本期目录/Table of Contents|

[1]李若飞,董发勤,杨刚,等.尼泊尔酸模与珠芽蓼对铀矿修复区重金属的累积及化学形态特征[J].应用与环境生物学报,2019,25(03):482-490.[doi:10.19675/j.cnki.1006-687x.201901009]
 LI Ruofei,DONG Faqin,**,et al.Characteristics of heavy metals accumulation and their chemical forms found for Polygonum viviparum and Rumex nepalensis in the remediation area of abandoned uranium mine[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):482-490.[doi:10.19675/j.cnki.1006-687x.201901009]
点击复制

尼泊尔酸模与珠芽蓼对铀矿修复区重金属的累积及化学形态特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年03期
页码:
482-490
栏目:
重金属污染及生物修复专栏
出版日期:
2019-06-25

文章信息/Info

Title:
Characteristics of heavy metals accumulation and their chemical forms found for Polygonum viviparum and Rumex nepalensis in the remediation area of abandoned uranium mine
作者:
李若飞董发勤杨刚张伟刘明学
1西南科技大学生命科学与工程学院 绵阳 621010 2固体废物处理与资源化教育部重点实验室 绵阳 621010 3环境友好能源材料国家重点实验室 绵阳 621010
Author(s):
LI Ruofei1 DONG Faqin1 2** YANG Gang1 ZHANG Wei3 & LIU Mingxue1
1 School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China 2 Key Laboratory of Solid Waste Treatment and Resource Recycling of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China 3 State Key Laboratory of Environment-friendly Energy Materials, Mianyang 621010, China
关键词:
多金属污染铀尾矿植物修复化学赋存形态蓼科植物
Keywords:
polymetallic pollution uranium tailing phytoremediation chemical form Polygonaceae
分类号:
X53 : X173
DOI:
10.19675/j.cnki.1006-687x.201901009
摘要:
为了解蓼科植物对铀矿区铀及伴生金属的富集、耐受机制,选择若尔盖铀矿修复区的两种蓼科优势植物珠芽蓼(Polygonum viviparum)和尼泊尔酸模(Rumex nepalensis),研究它们对铀及伴生金属的累积特征及其在植物组织中的化学赋存形态. 通过实地采样,分析珠芽蓼和尼泊尔酸模的重金属含量,并采用化学试剂连续提取重金属元素. 结果显示,该区域受铀、镉、砷、锌、铜重金属污染;区域污染差异为I(露天采矿点)> II(人工修复区)> III(附属河流);单因子指数和综合指数表明露天采矿点和人工修复区污染严重. 采样区域植物体内的锌、镉、铜、铅含量都超过植物重金属含量正常范围. 尼泊尔酸模对铀的转移系数和生物富集系数分别可达为16.03和1.11,而珠芽蓼的富集系数和转移系数分别为14.85和3.83 ,珠芽蓼和尼泊尔酸模适用于铀污染土壤的生态修复. 尼泊尔酸模中铀元素以去离子水提取态为主,该植物铀的高富集量可能与有机酸有关,其他重金属以醋酸盐和盐酸提取态为主;珠芽蓼中大部分的重金属以迁移性较低的盐酸提取态、醋酸提取态和氯化钠提取态存在. 因此,珠芽蓼和尼泊尔酸模对该铀矿修复区铀多金属胁迫具有良好的耐受与吸附性能;重金属以不活跃的化学赋存形态存在可能是两种蓼科植物应对重金属胁迫的重要耐受机制. (图4 表5 参40)
Abstract:
We studied the accumulation process of uranium and several other heavy metals, as well as their actual chemical forms in plant tissues, in Polygonum viviparum and Rumex nepalensis, which are dominant Polygonaceae plant species growing in the remediation area of the Zogie uranium mine. The results of this study will contribute to a better understanding of heavy metal absorption and tolerance by plants around polluted areas, which is important for improving remediation efficiency. The composition of heavy metals in P. viviparum and R. nepalensis were analyzed through field sampling. Their subsequent extraction from the sample using a special chemical separation method allowed to determine their chemical nature regarding their qualitative state of binding in the plant. The results showed that the soil in the remediation area was polluted by U, Cd, As, Zn, and Cu. The areas of contamination in declining order is as follows: I (open-pit mining site) > II (artificial restoration area) > III (affiliated river). Single factor index and Nemerow comprehensive pollution index showed that serious heavy metal pollution existed in open-pit mining sites and artificial restoration areas. Furthermore, Zn, Cd, Cu, and Pb in the plant samples exceeded the normal values. The bio-enrichment coefficient (BCF) and transfer factor (TF) of R. nepalensis were determined to be 16.03 and 1.11, respectively, and in P. viviparum, the values were 14.85 and 3.83, respectively. This indicates that both plants are suitable for use in ecological remediation of uranium-contaminated soil. Because uranium in R. nepalensis was mainly extracted with deionized water, organic acids might be the complexing ligand for uranium in the plants. For the other heavy metals, acetate and hydrochloric acid were mainly needed for their extraction from R. nepalensis, which means that they should have stronger ligands. In contrast, most of the heavy metals in P. viviparum could be extracted with hydrochloric acid, acetic acid, and sodium chloride. Both P. viviparum and R. nepalensis could be used for heavy metal remediation around a uranium mine. The plants show good tolerance and absorption properties for uranium and other heavy metals, such as Cd, in the investigated remediation area. The heavy metals found in these plants mentioned above are relatively strongly bound to their ligands, which indicates that both Polygonaceae plant species can cope with uranium and other heavy metal stressors.

参考文献/References:

1 Chen YL, Wei J, Ye YQ, Song H, Song ZX. Significance and geochemical characteristics of ree and carbon-oxygen isotopes of calcites in the zoige uranium ore field in Sichuan province, China [J]. Adv Earth Sci, 2012, 27 (10): 1061-1067
2 Chen YL, Hu XG, Wei J, Chang D, He ZX. The characteristics and significance of gas composition in fluid inclusion from Zoige 510-1 Uranium Deposits, Sichuan Province, China [J]. Acta Geol Sin-Engl, 2014, 2 (88): 1343-1344
3 彭玛丽, 叶娇珑, 何中海, 赖德军, 钟红梅. 基于高光谱数据的铀尾矿植被污染信息分析[J]. 地理空间信息, 2015, 13 (1): 111-114 [Peng M, Ye J, He Z. Information analysis of vegetation pollution in uranium tailings based on hyperspectral data [J]. GIS, 2015, 13 (1): 111-114 ]
4 任秀娟, 吴大付, 张莉. 植物修复技术在污水生态系统中的应用研究进展[J]. 河南科技学院学报: 自然科学版, 2013 (3): 66-70 [Ren X, Wu DF, Zhang L. Research of phytoremediation in sewage ecosystem [J]. J Henan Inst Sci Technol (Natur Sci Ed), 2013 (3): 66-70]
5 Anton A, Mathegaspar G. Factors affecting heavy metal uptake in plant selection for phytoremediation [J]. J Biosci, 2005, 60 (3-4): 244
6 Zayed AM, Terry N. Chromium in the environment: factors affecting biological remediation [J]. Plant Soil, 2003, 249 (1): 139-156
7 Gps S, Bali AS, Bhardwaj R, Singh HP, Batish D R, Kohli R K. Bioaccumulation and physiological responses to lead (Pb) in Chenopodium muralel [J]. Ecotoxic Environ Safety, 2018, 151: 83-90
8 王珂, 侯元同, 高召兰, 张璞, 王小芬, 李法曾. 中国蓼族(蓼科)植物区系的研究[J]. 广西植物, 2007, 27 (2): 197-202 [Wang K, Hou YT, Gao ZL, Zhang P, Wang XF, Li FZ. Study on flora of the tribe Polygoneae (Polygonaceae) in China [J]. Guiha, 2007, 27 (2): 197-202]
9 黄德娟, 徐卫东, 罗明标, 曾浩, 张玉叶, 张红英, 熊小文, 耿道行. 某铀矿九种优势草本植物铀的测定[J]. 环境科学与技术, 2011, 34 (3): 29-31 [Huang DJ, Xu WD, Luo MB, Zeng H, Zhang YY, Zhang HY, Xiong XW, Geng DH. Determination of nine dominant herbs’ uranium in one uranium mine [J]. Environ Sci Technol, 2011, 34 (3): 29-31]
10 戴泽龙, 凌海波, 李晓玲, 张海锋, 罗玉红, 黄应平, 胥焘. 湿生植物酸模对重金属富集作用研究[J]. 环境科学与技术, 2016, 39 (11): 58-62 [Dai ZL, Ling HB, Li XL, Zhang HF, Luo YH, Huang YP, Xu T. Study of heavy metals bioconcentration in the wetland plant Rumex acetosa [J]. Environ Sci Technol, 2016, 39 (11): 58-62]
11 蔡妙珍, 刘鹏, 徐根娣, 沈丽萍. 蓼科、禾本科植物细胞膜对铝胁迫反应的比较研究[J]. 水土保持学报, 2005, 19 (6): 122-125 [Cai MZ, Liu P, Xu GD, Shen LP. Comparison of plasma membrane response to Al3+ stress between Polygonaceae plants and Gramineae plants [J]. J Soil Water Conserv, 2005, 19 (6): 122-125]
12 Li MS, Luo YP, Su ZY. Heavy metal concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South China [J]. Environ Pollut, 2007, 147 (1): 168-175
13 Zhao YH, Meng ZQ, Niu XY, Jing JW, Wei XH. Effects of Cu2+ and Zn2+ stress on the bulbil germination and physiological-biochemical characteristics of Polygonum viviparum [J]. Acta Agric Sin, 2014, 22 (1): 116-121
14 Song H, Zhang C, Ni S, Xu Z, Huang C. New evidence for genesis of the Zoige Carbonate-Siliceous-Pelitic rock type uranium deposit in southern Qinling: discovery and significance of the 64 Ma intrusions [J]. Acta Geol Sin (Engl Ed), 2014, 88 (6): 1757-1769
15 He ZX, Chen YL, Chang D, Wei J, Hu XG. Study of physicochemical conditions for 510-1 uranium deposit mineralization in Zoige, Sichuan Province, China [J]. Acta Geol Sin (Engl Ed), 2014, 88 (S2): 1358-1359
16 Duan P, Wang W, Sang S, Qian F, Shao P, Zhao X. Partitioning of hazardous elements during preparation of high uranium coal from Rongyang, Guizhou, China [J]. J Geochem Explor, 2018, 185: 81-92
17 Intawongse M, Dean JR. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract [J]. Food Add Cont, 2006, 23 (1): 36-48
18 Zong MR, Dong FQ, Liu MX, Yang G, Zhang Q, Hou LJ, Luo ZP. A Detailed investigation on the environmental effect of an uranium mine in western China including γ-ray radiation formation and microbe distribution [J]. J Nanotechno, 2017, 17 (9): 6614-6619
19 Novaes CG, Bezerra, MA, Neto JHS. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP- OES) [J]. Microchem J, 2016, 128: 331-346
20 柴琳琳, 朱丽娜, 韩丽林, 李玲. 镍在土壤和紫花苜蓿中的积累特征[J]. 安全与环境学报, 2013, 13 (5): 1-6 [ Chai LL, Zhu LN, Han LL, Li L. Study on the accumulation effects of heavy metal nickel in the growth of alfalfa and the soil [J]. J Saf Environ, 2013, 13 (5): 1-6]
21 Henner P, Brédoire F, Tailliez A, Coppin F, Pierrisnard S, Camilleri V, Keller C. Influence of root exudation of white lupine (Lupinus albus L.) on uranium phytoavailability in a naturally uranium-rich soil [J]. J Environ Radio, 2018, s19-191: 39-50
22 Yongpisanphop J, Babel S, Kruatrachue M, Pokethitiyook P. Phytoremediation potential of plants growing on the Pb-contaminated soil at the Song Tho Pb Mine, Thailand [J]. Soil Sed Contam An Intern J, 2017, 26 (4): 426-437
23 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990 [China National Environmental Monitoring Centre. China’s Soil Elements Background Values [M]. Beijing: China Environmental Science Press, 1990]
24 刘德玲, 尹光彩, 陈志良, 林亲铁, 刘千钧, 钟松雄, 黄玲, 张建强. 硅酸钙和生物腐殖肥复配对葱生长和镉吸收的影响[J]. 环境科学, 2018, 39 (6): 2927-2935 [Liu DL, Yin GC, Chen ZL, Lin QT, Liu QJ, Zhong SX, Huang L, Zhang JQ. Effect of calcium silicate-biological humus fertilizer composite on uptake of cd by shallots from contaminated agricultural soil [J]. Environ Sci, 2018, 39 (6): 2927-2935
25 Faisal I, Tahira Y, Qasim A, Muhammad M, Shafaqat A, Muhammad SA, Sabir H, Muhammad R, Farhat A. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation [J]. Environ Sci Pollut Res, 2016, 23 (1): 220-233
26 赵玉红, 牛歆雨, 魏学红, 敬久旺. 藏中矿区珠芽蓼和尼泊尔酸模中重金属含量分析[J]. 植物资源与环境学报, 2013, 22 (4): 113-115 [ Zhao YH, Niu XY, Wei XH, Jing JW. Analysis on heavy metal content in Polygonum viviparum and Rumex nepalensis in mine area of Central Tibet [J]. J Plant Res Environ, 2013, 22 (4): 113-115]
27 Hegazy AK, Emam MH. Accumulation and soil-to-plant transfer of radionuclides in the Nile Delta coastal black sand habitats [J]. Int J Phyt, 2010, 13 (2): 140-155
28 罗浪, 刘明学, 董发勤, 向莎, 张格格, 宗美荣, 杨刚, 张倩, 张伟. 某多金属矿周围牧区土壤重金属形态及环境风险评测[J]. 农业环境科学学报, 2016, 35 (8): 1523-1531 [ Luo L, Liu MX, Dong FQ, Xiang S, Zhang GG , Zong MR, Yang G, Zhang Q, Zhang Wei. Speciation distribution characteristics of heavy metals in soil of multi-metal mining pastoral area and pollution assessment [J]. J Agric-Environ Sci, 2016, 35 (8): 1523-1531]
29 何航, 刘林, 吴冬. 高寒、高海拔地区铀矿勘探遗留设施治理及植被恢复方法: 中国, CN101725353A [P]. 2009 [He H, Liu L, Wu D, Gao H. Uranium mine exploration residual facility management and vegetation recovery method in high-cold high-altitude regions: China, CN101725353A [P]. 2009]
30 Kabata-Pendias A. Trace Elements in Soils and Plants [M]. Boca Raton: CRC Press, 2010: 432
31 Markert B. Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting [J]. Water Air Soil Pollut, 1992, 64 (3-4): 533-538
32 罗蓝, 罗学刚, 韩旭, 邓闻杨, 杨昊, 丁翰林, 邓国鸿. 酸模对水中U、Cd、As、Mn的富集特征与去除能力[J]. 环境科学与技术, 2018, 41 (1): 84-89 [Luo L, Luo XG, Han X, Deng WY, Yang H, Ding HL, Deng GH. Accumulation characteristics and removal ability of U, Cd, As and Mn by Rumex acetosa [J]. Environ Sci Technol, 2018, 41 (1): 84-89]
33 吴晓薇, 裴红宾, 张永清, 周进财, 高振峰, 连慧达. 酸模叶蓼对重金属Pb胁迫的生理响应[J]. 河南农业科学, 2013, 42 (10): 105-111 [Wu XW, Pei HB, Zhang YQ, Zhou JC, Gao ZF, Lian HD. Physiological response of Polygonum lapathifolium L. to Pb stress. J Henan Agric Sci, 2013, 42 (10): 105-111]
34 陈功亮, 罗学刚. 铀胁迫对酸模叶绿素荧光特性和酶活性的影响[J]. 环境科学与技术, 2015, 38 (3): 38-43 [Chen GL, Luo XG Effect of uranium stress on chlorophyll fluorescence characteristics and enzyme activity of Rumex acetosa L. [J]. Environ Sci Technol, 2015, 38 (3): 38-43]
35 孟其义, 钱晓莉, 陈淼, 赵蕾, 冯新斌, 孟博. 稻田生态系统汞的生物地球化学研究进展[J]. 生态学杂志, 2018, 37 (5): 1556-1573 [Meng QY, Qian XL, Chen Miao, Zhao L, Feng XB, Meng B. Biogeochemical cycle of mercury in rice paddy ecosystem: a critical review [J]. Chin J Ecol, 2018, 37 (5): 1556-1573]
36 王明新, 陈亚慧, 白雪, 潘新星, 高琪. 孔雀草对镉胁迫的响应及其积累与分布特征[J]. 环境化学, 2014, 33 (11): 1878-1884 [Wang MX, Chen YH , Bai X, Pan XX, Gao Q. Cd stress, accumulation and distribution characteristics in Tagetes patula L. [J] . Environ Chem, 2014, 33 (11): 1878-1884]
37 吴朝波, 王蕾, 郭建春, 符少萍, 刘姣, 李瑞梅, 江行玉, 段瑞军. 镉在海雀稗体内的分布及化学形态特征[J]. 环境化学, 2016, 35 (2): 330-336 [Wu CB, Wang L, Guo JC, Fu SP, Liu J, Li RM, Jiang HY, Duan RJ. Distribution and chemical forms of Cd in Paspalum vaginatum SW [J]. Environ Chem, 2016, 35 (2): 330-336]
38 刘强, 贺根和, 龙婉婉, 柳正葳. 3种野生蓼科植物对铝胁迫的生理响应[J]. 华中农业大学学报, 2011, 30 (3): 342-347 [Liu Q, He GH, Long TT, Liu ZW. Effects of Al3+ stress on 3 Polygonaceae plants [J]. J Huazhong Agric Univ, 2011, 30 (3): 342-347]
39 Wang Y, He W, Huang H, An L, Wang D, Zhang F. Antioxidative responses to different altitudes in leaves of alpine plant Polygonum viviparum in summer [J]. Acta Phys Plant, 2009, 31 (4): 839-848
40 张景茹, 周永章, 叶脉, 窦磊, 李兴远, 莫莉萍. 土壤-蔬菜中重金属生物可利用性及迁移系数[J]. 环境科学与技术, 2017, 40 (12): 256-266 [Zhang JR, Zhou YZ, Ye M, Dou L, Li XY, Mo LP. Bioavailability of heavy metal and transfer factors in a regional soil-to-crops system [J]. Environ Sci Technol, 2017, 40 (12): 256-266]

更新日期/Last Update: 2019-06-25