|本期目录/Table of Contents|

[1]康成芳,宫渊波,车明轩,等.川西高寒山地灌丛草甸不同海拔土壤碳矿化特征[J].应用与环境生物学报,2019,25(05):1030-1035.[doi:10.19675/j.cnki.1006-687x.2018.12044]
 KANG Chengfang,GONG Yuanbo**,CHEN Mingxuan,et al.Mineralization characteristics of alpine shrub meadow soil carbon at different elevations in western Sichuan[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1030-1035.[doi:10.19675/j.cnki.1006-687x.2018.12044]
点击复制

川西高寒山地灌丛草甸不同海拔土壤碳矿化特征
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1030-1035
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Mineralization characteristics of alpine shrub meadow soil carbon at different elevations in western Sichuan
作者:
康成芳宫渊波车明轩许蔓菁吕宸刘韩
1四川农业大学林学院 成都 611130 2四川省甘孜州林业科学研究所 康定 626001
Author(s):
KANG Chengfang1 GONG Yuanbo1** CHEN Mingxuan1 XU Manjing1 L? Chen1 & LIU Han2
1 College of Forestry, Sichuan Agricultural University, Chengdu 611130, China 2 Ganzi Institute of Forestry Research, Kangding 626001, China
关键词:
高寒山地矿化过程灰化土土壤有机碳土壤活性碳
Keywords:
alpine mountain mineralization process podzolic soil soil organic carbon active carbon
分类号:
S154.1
DOI:
10.19675/j.cnki.1006-687x.2018.12044
摘要:
研究不同海拔土壤碳矿化特征对深入认识不同海拔高寒灌丛草甸土壤有机碳动态变化有重要作用. 以折多山3 800 m、4 000 m、4 200 m的半阴坡和半阳坡土壤为研究对象,采用野外调查与室内分析相结合的方法对不同海拔土壤碳矿化差异进行探讨. 结果表明:各海拔土壤有机碳矿化速率随着培养时间的推移逐渐降低,且前21 d降低幅度明显高于后21 d,土壤有机碳矿化速率和累积碳矿化量在坡向上和土层中大体呈现出半阴坡高于半阳坡,0-20 cm土层高于20-40 cm土层且差异显著(P < 0.05),但在海拔上没有一致变化规律. 一级动态方程均能很好地拟合各海拔土壤累积矿化量,各海拔土壤潜在可矿化有机碳量(C0)、C0/SOC值均表现出半阴坡高于半阳坡,且都在3 800 m灰化土达到最大,表明在相同的环境温度背景下,半阴坡土壤固碳能力低于半阳坡,且灰化土固碳能力最弱. 各海拔土壤活性有机碳含量占总有机碳含量比例呈现出半阴坡大于半阳坡,说明与半阳坡相比半阴坡土壤有机碳质量更高. 除3 800 m灰化土以外,土壤有机碳、活性碳含量均表现0-20 cm土层高于20-40 cm土层且差异显著(P < 0.05). 土壤碳矿化速率、累积矿化量与土壤有机碳、活性碳显著相关,且活性碳更能直接影响有机碳矿化. 综上所述,高寒地区阴阳坡土壤有机碳矿化存在差异,阴坡有机碳矿化量高于阳坡. (图2 表4 参33)
Abstract:
Examining the variation in soil organic carbon (SOC) mineralization at different elevations is crucial to better understand organic carbon dynamics in soil. We selected semi-shady slopes and semi-sunny slopes of 3 800 m, 4 000 m, and 4 200 m in the alpine Zheduo Mountains as the study area and used field investigation and indoor analysis methods to evaluate the differences in carbon mineralization at different elevations. The SOC mineralization rate gradually decreased with cultivation time at each elevation, and the first 21-day reduction was significantly higher than the last 21-day reduction. There was no consistent change in the SOC mineralization rate or cumulative SOC mineralization with elevation, but semi-shady slopes and the 0-20 cm soil layer presented significantly higher values than semi-sunny slopes or the 20-40 cm soil layer (P < 0.05). The dynamics of SOC mineralization could be described by first-order kinetics. The potential mineralizable organic carbon (C0) and C0/SOC values were significantly higher in the semi-shade slopes and reached maximum values at 3 800 m, indicating that the carbon sequestration capacity of semi-shady slope soil was relatively lower than that of the semi-sunny slopes. The podzolic soil was weakest under the same ambient temperatures. The ratio of soil active organic carbon to total organic carbon was significantly higher in the semi-shade slopes, indicating that the quality of soil organic carbon was greater. Soil organic carbon and activated carbon content were significantly higher in the 0-20 cm soil layer than in the 20-40 cm soil layer (P < 0.05), except in podzolic soil at 3 800 m. Soil organic carbon was also significantly correlated with soil activated carbon. The soil carbon mineralization rate and cumulative mineralization were significantly correlated with SOC and activated carbon content, and activated carbon directly affected organic carbon mineralization.

参考文献/References:

1 Li ZP, Zhang TL, Chen BY. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon [J]. Acta Pedol Sin, 2004, 41 (4): 551-556
2 Rey A, Petsikos C, Jarvis PG, Grace J. Effect of temperature and moisture on rates of carbon mineralization in a mediterranean oak forest soil under controlled and fieldconditions [J]. Eur J Soil Sci, 2005, 56 (5): 589-599
3 Chow AT, Tanji KK, Gao S, Dahlgren RA. Temperature,water content and wet-dry cycle effects on DOC production andcarbon mineralization in agricultural peat soils [J]. Soil Biol Biochem, 2006, 38 (3): 477-488
4 Gauthier A, Amiotte-Suchet P, Nelson PN, Lévêque J, Zeller B, Hénault C. Dynamics of the water extractable organic carbon pool during mineralisation in soils from a Douglas fir plantation and an oak-beech forest: An incubation experiment [J]. Plant Soil, 2010, 330 (1-2): 465-479
5 Yang LX, Pan JJ. Progress instudy of measurement of soil active organic carbon pool [J]. Chin J Soil Sci, 2004, 35 (4): 502-506
6 Gregorich EG, Beare MH, Stoklas U. Biodegra-dability of soluble organic matter in maize-cropped soils [J]. Geoderma, 2003, 113 (3): 237-252
7 Chen CP, Juang KW, Cheng CH, Pai CW. Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan [J]. Bot Stuoly, 2016, 57 (1): 32-39
8 王嫒华, 苏以荣, 李杨, 吴金水, 郑华, 朱捍华, 胡乐宁. 稻草还田条件下水田和旱地土壤有机碳矿化特征与差异 [J]. 土壤学报, 2011, 48 (5): 979-987 [Wang AH, Su YR, Li Y, Wu JS, Zheng H, Zhu HH, Hu LN. Characteristics of mineralization of soil organic carbon in paddy and upland with rice straw incorporated and differences between the two [J]. Acta Pedol Sin, 2011, 48 (5): 979-987]
9 Munda S, Bhaduri D, Mohanty S, Chatterjee D, Tripathi R, Shahid M, Kumar U, Bhattacharyya P, Kumar A, Adak T, Hemant JK, Nayak AK. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar [J]. Biomass Bioenergy, 2018, 115 (2): 1-9
10 Lochon I, Carrère P, Revaillot S, Revaillot S, Juliette MG. Interactive effects of liming and nitrogen management on carbon mineralization in grassland soils [J]. Appl Soil Ecol, 2018, 130 (1): 142-148
11 郝瑞军, 李忠佩, 车玉萍. 冻融交替对水稻土水溶性有机碳含量及有机碳矿化的影响[J]. 土壤通报, 2007, 38 (6): 1052-1057 [Hao RJ, Li ZP, Che YP. Effects of freezing and thawing cycles on the contents of WSOC and the organic carbon mineralization in paddy soil [J]. Chin J Soil Sci, 2007, 38 (6): 1052-1057]
12 赵媛, 周旺明, 王守乐, 周莉, 于大炮, 代力民. 冻融对温带森林土壤碳、氮矿化作用的影响[J]. 生态学杂志, 2017, 36 (6): 1548-1554 [Zhao Y, Zhou WM, Wang SL, Zhou L, Yu DP, Dai LM. Effects of freezing-thawing on soil carbon and nitrogen mineralization in temperate forest ecosystems [J]. Chin J Ecol, 2017, 36 (6): 1548-1554]
13 Sobek S. Temperature-controlled organic carbon mineralization in lake sediments [J]. Nature, 2010, 466 (7305): 478-481
14 刘霜, 张心昱, 杨洋, 唐玉倩, 王忠强. 温度对温带和亚热带森林土壤有机碳矿化速率及酶动力学参数的影响[J]. 应用生态学报, 2018, 29 (2): 433-440 [Liu S, Zhang XY, Yang Y, Tang YQ, Wang ZQ. Effects of temperature on soil organic carbon mineralization rate and enzyme kinetic parameters in temperate and subtropical forests [J]. Chin J Appl Ecol, 2018, 29 (2): 433-440]
15 Six J, Paustian K, Elliott ET, Combrink C. Soil structure and organic matter:I.Distribution of aggregate-size classes and aggregate-associatedcarbon [J]. Soil Sci Soc Am J, 2000, 64 (2): 681-689
16 刘秉儒. 红砂植被盖度对土壤不同形态碳、氮及细菌多样性的影响[J]. 干旱地区农业研究, 2009, 27 (4): 155-162 [Liu BR. Effects of different plant cover of Reaumuria soongorica on soil carbon and nitrogen in different variety and soil bacterial diversity [J]. Agric Res Arid Areas, 2009, 27 (4): 155-162]
17 Lefroy RDB, Blair GJ, Strong WM. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance [J]. Plant Soil, 1993, 155 (1): 399-402
18 常宗强, 马亚丽, 刘蔚, 冯起, 苏永红, 席海洋, 司建华. 土壤冻融过程对祁连山森林土壤碳氮的影响[J]. 冰川冻土, 2014, 36 (1): 200-206 [Chang ZQ, Ma YL, Liu W, Fen Q, Su YH, Xi HY, Si JH. Effect of soil freezing and thawing on the carbon and nitrogen in forest soil in the Qilian Mountains [J]. Chin J Glaciol Geocryol, 2014, 36 (1): 200-206]
19 Jones AC. Estimation of an active fraction of soil nitrogen [J]. Commun Soil Sci Plant Anal, 1984, 15 (1): 23-32
20 高菲, 林维, 崔晓阳. 小兴安岭两种森林类型土壤有机碳矿化的季节动态[J]. 应用生态学报, 2016, 27 (1): 9-16 [Gao F, Lin W, Cui XY. Seasonal dynamics of soil organic carbon mineralization for twoforest types in Xiaoxing’an Mountains, China [J]. Chin J Appl Ecol, 2016, 27 (1): 9-16]
21 Lange OL, Green TG. Lichens show that fungi can accli-mate their respiration to seasonal changes in temperature [J]. Oecologia, 2005, 142 (1): 11-19
22 王良健, 李显明, 林致远. 也论我国西南高山地区暗针叶林下发育的土壤[J]. 地理学报, 1995 (6): 542-551 [Wang LJ, Li XM, Lin ZY. A discussion on the soil below dark coniferous forests of the high mountains in southwest China [J]. Acta Geogr Sin, 1995 (6): 542-551]
23 熊国炎, 赵其国, 王明珠.大兴安岭北部的灰化土[J]. 土壤学报, 1979, 16 (2): 110-126 [Xiong GY, Zhao QG, Wang MZ. Podzolic soil in the north of Daxing’anling [J]. Acta Pedol Sin, 1979, 16 (2): 110-126]
24 刘浩宇, 巩晟萱, 王兵, 戴伟, 庞欢, 张毓涛. 阿尔泰山冷杉林下土壤有机碳矿化特征[J]. 水土保持通报, 2016, 6 (1): 327-331 [Liu HY, Gong SX, WangB, Dai W, Pang H, Zhang MT. Mineralization characteristics of soil organic carbon under abies nephrolepis forest in Altai mountains [J]. Bull Soil Water Conser, 2016, 6 (1): 327-331]
25 聂阳意, 王海华, 李晓杰, 任寅榜, 金昌善, 徐自坤, 吕茂奎, 谢锦升. 武夷山低海拔和高海拔森林土壤有机碳的矿化特征[J]. 应用生态学报, 2018, 29 (3): 748-756 [Nie YY, Wang HH, Li XJ, Ren YB, Jin CS, Xu ZK, Lv MK, Xie JS. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China [J]. Chin J Appl Ecol, 2018, 29 (3): 748-756]
26 刘旻霞, 王刚. 高寒草甸植物群落多样性及土壤因子对坡向的响应[J]. 生态学杂志, 2013, 32 (2): 259-265 [Liu MX, Wang G. Responses of plant community diversity and soil factors to slope aspect in alpine meadow [J]. Chin J Ecol, 2013, 32 (2): 259-265]
27 刘少冲, 段文标, 钟春艳, 陈立新, 王丽霞. 阔叶红松林不同大小林隙土壤温度、水分、养分及微生物动态变化[J]. 水土保持学报, 2012, 26 (5): 78-83 [Liu SC, Duan WB, Zhong CY, Chen LX, Wang LX. Dynamic changes in soil temperature, water content, nutrition and microorganisms of different size gaps in the mixed broadleaved korean pine forest [J]. Chin J Soil Water Conser, 2012, 26 (5): 78-83]
28 徐侠, 王丰, 栾以玲, 汪家社, 方燕鸿, 阮宏华. 武夷山不同海拔植被土壤易氧化碳[J]. 生态学杂志, 2008, 27 (7): 1115-1121 [ Xu X, Wang F, Luan YL, Wang JS, Fang YH, Ruan HH. Soil readily oxidizable carbon along an elevation gradient of Wuyi Mountains in southeastern China [J]. Chin J Ecol, 2008, 27 (7): 1115-1121]
29 秦纪洪, 王琴, 孙辉. 川西亚高山-高山土壤表层有机碳及活性组分沿海拔梯度的变化[J]. 生态学报, 2013, 33 (18): 5858-5864 [Qin JQ, Wang Q, Sun H. Changes of organic carbon and its labile fractions in topsoil with altitude in subalpine-alpine area of southwestern China [J]. Acta Ecol Sin, 2013, 33 (18): 5858-5864]
30 张于光, 张小全, 肖烨. 米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J]. 应用生态学报, 2006, 17 (11): 2030-2033 [Zhang YG, Zhang XQ, Xiao Y. Effects of land use change on soil organic carbon and microbial biomass carbon in Miyaluo forest area [J]. Chin J Appl Ecol, 2006, 17 (11): 2030-2033]
31 程浩, 张厚喜, 黄智军, 徐自坤, 杨强, 刘爱琴. 武夷山不同海拔高度土壤有机碳含量变化特征[J]. 森林与环境学报, 2018, 38 (2): 135-141 [Cheng H, Zhang HX, Huang ZJ,Xu ZK, Yang Q, Liu AQ. Variations of soil organic carbon content along an altitudinal gradient in Wuyi mountain [J]. Chin J Forest Environ, 2018, 38 (2): 135-141]
32 费凯, 胡玉福, 舒向阳, 肖海华, 杨泽鹏, 何剑锋. 若尔盖高寒草地沙化对土壤活性有机碳组分的影响[J]. 水土保持学报, 2016, 30 (5): 327-330 [Fei K, Hu YF, Shu XY, Xiao HH, Yang ZP, He JF. Effects of desertification o soil active organic carbon fractions in Zoige alpine-cold grassland [J]. Chin J Soil Water Conser, 2016, 30 (5): 327-330]
33 Lovell RJS, Bardgett R. Soil microbial biomass and activity in long-term grassland: effects of management changes [J]. Soil Biol Biochem, 1995, 27 (7): 969-975

更新日期/Last Update: 2019-10-25