|本期目录/Table of Contents|

[1]孙晓莹,陈意超,曹沁,等.耐盐菌Pseudomonas brassicacearum YZX4的筛选、鉴定及其植物促生特性[J].应用与环境生物学报,2019,25(05):1133-1138.[doi:10.19675/j.cnki.1006-687x.2018.12038]
 SUN Xiaoying,CHEN Yichao,et al.Isolation and identification of halotolerant Pseudomonas brassicacearum YZX4 and its plant growth-promoting traits[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1133-1138.[doi:10.19675/j.cnki.1006-687x.2018.12038]
点击复制

耐盐菌Pseudomonas brassicacearum YZX4的筛选、鉴定及其植物促生特性
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1133-1138
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Isolation and identification of halotolerant Pseudomonas brassicacearum YZX4 and its plant growth-promoting traits
作者:
孙晓莹陈意超曹沁罗倚坪李东刘晓风
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
SUN Xiaoying1 2 CHEN Yichao1 CAO Qin1 LUO Yiping1 LI Dong1** & LIU Xiaofeng1**
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100000, China
关键词:
耐盐菌植物根际促生菌ACC脱氨酶吲哚乙酸(IAA)嗜铁素固氮溶磷
Keywords:
halotolerant bacteria plant growth promoting rhizobacteria1-aminocyclopropane-1-carboxylic acid (ACC)deaminase siderophore indole acetic acid (IAA) nitrogen fixation phosphate solubilization
分类号:
S144 : S156.4
DOI:
10.19675/j.cnki.1006-687x.2018.12038
摘要:
植物根际促生菌(PGPR)具有促进植物生长的作用. 从盐碱地植物根际土壤中分离筛选耐盐菌,测定其在盐胁迫下的1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性、吲哚乙酸(IAA)合成能力、嗜铁素合成能力、无机磷溶解能力,以及在Ashby无氮培养基上的生长情况;并对同时具有以上促生功能的耐盐菌进行不同盐浓度下的促生功能测定、小黄白(白菜Brassica pekinensis的一个品种)种子萌发促生实验和菌株鉴定. 结果显示,在筛选得到的15株耐盐菌中,菌株YZX4在10 g/L NaCl浓度下同时具有多种促生特性. 在不同盐浓度下促生功能测定实验中,当盐浓度为10 g/L 时,菌株的ACC脱氨酶活性(以α-KA/Pr计)、IAA合成量和嗜铁素相对含量最高,分别为11.07(±1.89)?mol mg-1 h-1、36.42(±1.81)mg/L和0.61(±0.15),且随着盐浓度的增加而降低;在20 g/L盐浓度下,该菌株的固氮量、有机磷溶解量和无机磷溶解量最高,分别为4.79(±1.61)mg/L、1.68±(0.04)mg/L和23.77(±1.30)mg/L. 在小黄白种子萌发促生实验中,当盐浓度为5.84 g/L 时,YZX4的菌液(105 CFU/mL)对小黄白的种子萌发率、幼苗根、茎长和平均鲜重分别提高了7.19%、17.33%、23.85%和22.69%. 根据形态特征、生理生化鉴定结果和16S rDNA序列分析,初步确定菌株YZX4为油菜假单胞菌(Pseudomonas brassicacearum). 上述研究结果表明在盐胁迫下同时具备多种促生特性的菌株YZX4可作为盐碱地改良微生物菌剂的优良菌源. (图6 表4 参37)
Abstract:
Plant growth-promoting rhizobacteria (PGPR) play an important role in plant growth in saline soils. To study the mechanisms of action of PGPRs under certain NaCl concentrations, saline rhizosphere soil was screened for salt-tolerant bacteria with plant growth-promoting traits, such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, indole acetic acid (IAA) and siderophore production, growth on Ashby medium, and inorganic phosphate solubilization. The strain with the greatest growth-promoting functions was identified and tested for its effect on Chinese cabbage (Brassica pekinensis) seed germination and plant growth under different salt concentrations. Strain YZX4 was found to have greater plant growth-promoting activity than the other strains tested. YZX4 showed the highest ACC deaminase activity (11.07 ± 1.89 ?mol α-KA/[mg Pr·h]), IAA production (36.42 ± 1.81 mg/L), and siderophore production (0.61 ± 0.15) in the presence of 10 g/L NaCl. These activities all decreased with increasing NaCl concentrations from 10 g/L to 100 g/L. YZX4 had the highest nitrogen fixation and organic phosphate and inorganic phosphate solubilization ability in 20 g/L NaCl, reaching 4.79 ± 1.61 mg/L, 1.68 ± 0.04 mg/L, and 23.77 ± 1.30 mg/L, respectively. Compared with the control group, YZX4 (105 CFU/mL) markedly increased the germination rate (7.19%), root length (17.33%), stem length (23.85%), and fresh weight (22.69%) of Chinese cabbage in 5.84 g/L NaCl. Moreover, bacterial morphological observations, physiological and biochemical identification, and 16S rDNA analysis showed that strain YZX4 was Pseudomonas brassicacearum. These results indicate that YZX4 has the potential for use in microbial fertilizer, which could be used to promote plant growth under certain NaCl concentrations.

参考文献/References:

1 Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects [J]. Ecotox Environ Safe, 2018, 156 (225-246): 10.1016/j.ecoenv.2018.03.013
2 Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria, critical reviews in microbiology, informa healthcare [J]. Crit Rev Microbiol, 1994, 21 (1): 1-18
3 Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world [J]. Microbiol Res, 2014, 169 (1): 30-39
4 Neilands JB. Siderophores: Structure and function of microbial iron transport compounds [J]. J Biol Chem, 1995, 270 (45): 26723-26726
5 Graham PH, Vance CP, Graham PH, Vance CP. Nitrogen fixation in perspective: an overview of research and extension needs [J]. Field Crop Res, 2000, 65 (2): 93-106
6 Rodríguez H, Fraga R, Gonzalez T, Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria [J]. Plant Soil, 2006, 287 (1/2): 15-21
7 郑娜, 柯林峰, 杨景艳, 王雪飞, 黄典, 程万里, 李嘉晖, 郑龙玉, 喻子牛, 张吉斌. 来源于污染土壤的植物根际促生细菌对番茄幼苗的促生与盐耐受机制[J]. 应用与环境生物学报, 2018, 24 (1): 47-52 [Zheng N, Ke LF, Yang JY, Wang XF, Huang D, Cheng WL, Li JH, Zheng LY, Yu ZN, Zhang JB. Growth improvement and salt tolerance mechanisms of tomato seedlings [J]. Chin J Appl Environ Biol, 2018, 24 (1): 47-52]
8 Egamberdieva D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat [J]. Acta Physiol Plant, 2009, 31 (4): 861-864
9 Bal HB, Nayak L, Das S, Adhya TK. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress [J]. Plant Soil, 2013, 366 (1-2): 93-105
10 Sharma S, Kulkarni J, Jha B. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut [J]. Front Microbiol, 2016, 7(368): 1-11
11 赵龙飞, 徐亚军, 常佳丽, 李敏, 张艳玲, 党永杰, 王梦思, 程亚稳, 张斌月. 具ACC脱氨酶活性大豆根瘤内生菌的筛选、抗性及促生作用[J]. 微生物学报, 2016, 56 (6): 1009-1021 [Zhao LF, Xu YJ, Chang JL, Li M,Zhang YL, Dang YJ, Wang MS, Cheng Yw, Zhang BY. Screening, resistance and growth-promoting effect of endophytic bacteria with ACC deaminase activity isolated from soybean nodules [J]. Acta Microbiol Sin, 2016, 56 (6): 1009-1021]
12 李倍金, 罗明, 周俊, 孔德江, 张铁明. 几种禾草内生固氮菌的分离及固氮活性测定[J]. 草业学报, 2008, 17 (5): 37-42[Li BJ, Luo M, Luo J, Kong DJ, Zhang YM. Isolation of endophytic diazotrophic bacteria from several gramineae grasses and determination of their nitrogenase activity [J]. Acta Pratac Sin, 2008, 17 (5): 37-42]
13 王平, 董飚, 李阜棣, 胡正嘉. 小麦根圈细菌铁载体的检测[J]. 微生物学通报, 1994, 21 (6): 323-326 [Wang P, Dong B, Li FD, Hu ZJ. Detection and determination of the siderophores produced by wheat rhizobacteria [J]. Microbiol China, 1994, 21 (6): 323-326]
14 Pikovskaya RI. Mobilization of phosphorus in soil in connection with vital activity of some microbial species [J]. Microbiolology, 1948, 17: 362-370
15 K?z?lkaya R. Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains [J]. Ecol Eng, 2008, 33 (2): 150-156
16 Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria [J]. Physiol Plantarum, 2003, 118 (1): 10-15
17 Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria [J]. Appl Environ Microb, 1995, 61 (2): 793-796
18 Payne SM. Detection, isolation, and characterization of siderophores [J]. Method Enzymol, 1994, 235 (235): 329
19 Sumner JB. A method for the colorimetric determination of phosphorus [J]. Science, 1944, 100 (2601): 413-414
20 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 364-391 [Dong XZ, Cai MY. Systematic Identification of Common Bacteria [M]. Beijing: Science Press, 2001: 364-391]
21 Saravanakumar D, Samiyappan R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants [J]. J Appl Microbiol, 2010, 102 (5): 1283-1292
22 Bhise KK, Bhagwat PK, Dandge PB. Plant growth-promoting characteristics of salt tolerant enterobacter cloacae strain KBPD and its efficacy in amelioration of salt stress in Vigna radiata L. [J]. J Plant Growth Regul, 2016, 36 (1): 215-226
23 Maqshoof A, Zahir ZA, H Naeem A, Asghar M. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase [J]. Can J Microbiol, 2011, 57 (7): 578-589
24 Tank N, Saraf M. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants [J]. J Plant Interact, 2010, 5 (1): 51-58
25 Li H, Lei P, Pang X, Li S, Xu H, Xu Z, Feng X. Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4 [J]. Appl Soil Ecol, 2017, 119:26-34
26 Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A. Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions [J]. J Plant Interact, 2014, 9 (1): 379-387
27 Barua S, Tripathi S, Chakraborty A, Ghosh S, Chakrabarti K. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils [J]. Microbiol Res, 2012, 167 (2): 95-102
28 Ahmed E, Holmstr?m SJM. Siderophores in environmental research: roles and applications [J]. Microb Biotechnol, 2014, 7 (3): 196-208
29 Latour X, Delorme S, Mirleau P, Lemanceau P. Identification of Traits Implicated in the Rhizosphere Competence of Fluorescent Pseudomonads: Description of A Strategy Based on Population and Model Strain Studies Sustainable Agriculture [M]. Springer Netherlands, 2009: 285-296
30 李亚男, 蒋芬, 张杰, 范永义, 陈敬, 彭友林, 胡运高. 高原土壤中稻瘟病拮抗细菌的抑菌效果及抗菌机理[J]. 应用与环境生物学报, 2017, 23 (1): 33-40[Li YN, Jiang F, Zhang J, Fan YY, Chen J, Peng YL, Hu YG. Inhibition effects and antibacterial mechanism against rice blast of antagonistic bacteria in plateau soil [J]. Chin J Appl Environ Biol, 2017, 23 (1): 33-40]
31 Duijff BJ, Meijer JW, Bakker PaHM, Schippers,B. Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. [J]. Neth J Plant Pathol, 1993, 99 (5-6): 277-289
32 廖萍, 刘茂柯, 张瀚能, 赵翀, 杨雅琳, 张小平, 张金羽, 赵珂. 铬污染区糙野青茅内生耐铬细菌筛选及其促生能力[J]. 应用与环境生物学报, 2015, 21 (6): 1025-1031 [Liao P, Liu MK, Zhang HN, Zhao C, Yang YL, Zhang XP, Zhang JY, Zhao K. Chromium-resistant endophytic bacteria from Deyeuxia scabrescens (Griseb.) in chromium contaminated area: isolation, screening and plant growth promoting [J]. Chin J Appl Environ Biol, 2015, 21 (6): 1025-1031]
33 Tester M, Davenport R. Na?tolerance and Na?transport in higher plants [J]. Ann Bot-London, 2003, 91 (5): 503-527
34 Zhou N, Zhao S, Tian CY. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress [J]. FEMS Microbiol Lett, 2017, 364 (11):1-8
35 Pereira SIA, Castro PML. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils [J]. Ecol Eng, 2014, 73: 526-535
36 Kpomblekou-A K , Tabatabai MA . Effect of organic acids on release of phosphorus from phosphate rocks1 [J]. Soil Sci, 1994, 158 (6): 442-453
37 Tsavkelova EA, Cherdyntseva TA, Klimova SY, Shestakov AI, Botina SG, Netrusov AI. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin [J]. Arch Microbiol, 2007, 188 (6): 655-664

更新日期/Last Update: 2019-10-25