|本期目录/Table of Contents|

[1]樊利华,周星梅,吴淑兰,等.干旱胁迫对植物根际环境影响的研究进展[J].应用与环境生物学报,2019,25(05):1244-1251.[doi:10.19675/j.cnki.1006-687x.2018.12037]
 FAN Lihua,ZHOU Xingmei,WU Shulan,et al.Research advances on the effects of drought stress in plant rhizosphere environments[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1244-1251.[doi:10.19675/j.cnki.1006-687x.2018.12037]
点击复制

干旱胁迫对植物根际环境影响的研究进展
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1244-1251
栏目:
综述
出版日期:
2019-10-31

文章信息/Info

Title:
Research advances on the effects of drought stress in plant rhizosphere environments
作者:
樊利华周星梅吴淑兰向君钟晓燕唐雪滋王彦杰
1四川师范大学生命科学学院 成都 610100 2中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室,中国科学院成都生物研究所 成都 610041
Author(s):
FAN Lihua1 ZHOU Xingmei2 WU Shulan1 XIANG Jun1 ZHONG Xiaoyan1 TANG Xuezi1 & WANG Yanjie1**
1 College of Life Science, Sichuan Normal University, Chengdu 610100, China 2 CAS Key Laboratory of Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
干旱胁迫根际根系分泌物土壤养分土壤酶土壤微生物
Keywords:
drought stress rhizosphere root exudate soil nutrient soil enzyme soil microorganism
分类号:
Q948
DOI:
10.19675/j.cnki.1006-687x.2018.12037
摘要:
全球气候变化下频发的干旱灾害已成为一个世界范围内的重大气候问题. 根际环境是植物适应极端环境的有效方式之一,探讨干旱胁迫下根际环境改变及其与植物抗逆性和生产力的关系,已逐渐成为包括植物营养学、植物生理学、土壤学、微生物学等多学科的研究热点. 本文在介绍干旱的严重性及根际环境的重要性的基础上,根据近年来国内外关于干旱对植物根际环境影响的研究成果,重点阐述干旱胁迫对植物根系分泌物的组成和含量、根际土壤碳氮磷养分状况、根际土壤酶活性及根际微生物数量和种群结构的影响,结果表明干旱胁迫不仅会提高植物根系分泌物的数量,改变其组成,而且会改变根际土壤酶活性及土壤微生物群落结构多样性与功能,同时也会改变土壤养分的循环与可利用性,从而影响植物生长,且这些改变会因植物种类、植物所处发育阶段、干旱胁迫强度与时间等的不同而异;但这些研究仅从现象上对其变化趋势进行了探究,目前对其相关机理性的研究仍非常缺乏、不够系统深入. 未来应结合一些现代的新技术和方法,从根际化学信号及微生物组学的细微尺度上,加强干旱胁迫及其与其他环境胁迫耦合下植物根际环境变化与机理的系统深入研究,对丰富和推进植物对干旱逆境的适应与响应机理性的认识具有重要意义. (参91)
Abstract:
Frequent droughts, caused by global climate change, have become a major climate issue worldwide. The losses caused by droughts are the largest of all natural disasters. A multidisciplinary research hotspot has gradually developed that encompasses plant nutrition, plant physiology, soil science, and microbiology to explore the changes in the plant rhizosphere environment as an effective means to adapt plants to extreme drought conditions and explore the relationship between plant stress resistance and productivity. This article first introduces severity of droughts and the importance of the plant rhizosphere environment. The changes in the composition and content of root exudates, nutrient status (carbon, nitrogen, and phosphorus), enzymatic activities, and size and population structure of microorganisms in rhizosphere soil under drought conditions were evaluated according to current domestic and foreign research results. The results show that drought stress changes enzyme activities and the number and composition of plant root exudates as well as the diversity, structure, and function of the microbial community in rhizosphere soil in addition to the circulation and availability of soil nutrients, thus affecting plant growth. These changes vary depending on plant species, plant developmental stage, and the intensity and duration of drought stress. However, these studies have explored changes in the rhizosphere environment under drought stress only in regard to the phenomenon, and in-depth systematic mechanism studies remain scarce. Future in-depth systematic studies on the impact mechanisms of drought stress, especially when coupled with other environmental stressors, on the plant rhizosphere environment are needed, using new technologies and modern methods to study fine-scale rhizosphere chemical signals and the microbiome. These studies will be important to enrich and promote the understanding of plant adaptation and response mechanisms to drought stress.

参考文献/References:

1. 冯慧芳, 薛立, 任向荣, 傅静丹, 郑卫国, 史小玲. 4种阔叶幼苗对PEG模拟干旱的生理响应[J]. 生态学报, 2011, 31 (2): 371-382 [Feng HF, Xue L, Ren XR, Fu JD, Zheng WG, Shi XL. Physiological responses of four broadleaved seedlings to drought stress simulated by PEG [J]. Acta Ecol Sin, 2011, 31 (2): 371-382]
2. Xue Q, Zhu Z, Musick JT, Stewart BA, Dusek DA. Root growth and water uptake in winter wheat under deficit irrigation [J]. Plant Soil, 2003, 257 (1): 151-161
3. Osmont KS,Sibout R,Hardtke CS. Hidden branches: developments in root system architecture [J]. Annu Rev Plant Biol, 2007, 58 (1): 93-113
4. Nibau C, Gibbs DJ, Coates JC. Branching out in new directions: the control of root architecture by lateral root formation [J]. New Phytol, 2008, 179 (3): 595-614
5. 牛素贞, 宋勤飞, 樊卫国, 陈正武. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017, 37 (21): 7333-7341 [Niu SZ, Song QF, Fan WG, Chen ZW. Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants [J]. Acta Ecol Sin, 2017, 37 (21): 7333-7341]
6. 肖列, 刘国彬, 李鹏, 薛萐. 短期CO2浓度升高和干旱胁迫对白羊草土壤碳氮和微生物根际效应的影响[J]. 应用生态学报, 2017, 28 (10): 3251-3259 [Xiao L, Liu GB, Li P, Xue J. Effects of short-term elevated CO2 concentration and drought stress on the rhizosphere effects of soil carbon, nitrogen and microbes of Bothriochloa ischaemum [J]. Chin J Appl Ecol, 2017, 28 (10): 3251-3259]
7. 吕爽, 张现慧, 张楠, 夏延国, 井家林, 李景文. 胡杨幼苗根系生长与构型对土壤水分的响应[J]. 西北植物学报, 2015, 35 (5): 1005-1012 [Lü S, Zhang XH, Zhang N, Xia YG, Jing JL, li JW. Response of root growth and architecture of Populus euphratica seedling on soil water [J]. Acta Bot Bor-Occid Sin, 2015, 35 (5): 1005-1012]
8. 周健民, 沈仁芳. 土壤学大辞典[M], 北京: 科学出版社, 2013 [Zhou JM, Shen RF. Dictionary of Soil Science [M]. Beijing: Science Press, 2013]
9. 张太平, 潘伟斌. 根际环境与土壤污染的植物修复研究进展[J]. 生态环境学报, 2003, 12 (1): 76-80 [Zhang TP, Pan WB. Progress in the research of rhizosphere and phytoremediation of contaminated soils [J]. Eco Environ, 2003, 12 (1): 76-80]
10. 胡智勇, 陆开宏, 梁晶晶. 根际微生物在污染水体植物修复中的作用[J]. 环境科学与技术, 2010, 33 (5): 75-80 [Hu ZY, Lu KH, Liang JJ. Role of rhizosphere microorganisms of aquatic plants in phytoremediation of wastewater [J]. Environ Sci Technol, 2010, 33 (5): 75-80]
11. Albert GG, Catherine P, Jordi S, Michal O, Otmar U, Josep P. Root exudate metabolomes change under drought and show limited capacity for recovery [J]. Sci Rep, 2018, 8: 12696
12. 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38 (3): 298-310 [Wu LK, Lin XM, Lin WX. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates [J]. Chin J Plant Ecol, 2014, 38 (3): 298-310]
13. 贺永华, 沈东升, 朱荫湄. 根系分泌物及其根际效应[J]. 科技通报, 2006, 22 (6): 761-766 [He YH, Shen DS, Zhu YM. Root exudates and their rhizospheric effects [J]. Bulletin Sci Technol, 2006, 22 (6): 761-766]
14. 陈龙池, 廖利平, 汪思龙, 肖复明. 根系分泌物生态学研究[J]. 生态学杂志, 2002 , 21 (6): 57-62 [Chen LC, Liao LP, Wang SL, Xiao FM. A review for research of root exudates ecology [J]. Chin J Ecol, 2002, 21 (6): 57-62]
15. 李春俭, 马玮, 张福锁. 根际对话及其对植物生长的影响[J]. 植物营养与肥料学报, 2008, 14 (1): 178-183 [Li CJ, Ma W, Zhang FS. Rhizosphere talk and its impacts on plant growth [J]. J Plant Nutr Fertil, 2008, 14 (1): 178-183]
16. 高艳. 不同干旱条件下的根系分泌物及其与根际微生物的关系[D]. 重庆: 西南大学, 2008 [Gao Y. The relationship between root exudates and rhizosphere microorganism in different drought conditions [D]. Chongqing: Southwest University, 2008]
17. Song FB, Han XY, Zhu XC, Herbert SJ. Response to water stress of soil enzymes and root exudates from drough and non-drought tolerant corn hybrids at different growth stages [J]. Rev Can De La Sci Du Sol, 2012, 92 (3): 501-507
18. 赵宽. 不同磷、干旱水平对植物根系有机酸分泌的影响[D]. 镇江: 江苏大学, 2011 [Zhao K. Effect of different phospborus and drought levels to secretion of organic acids in plants root system [D]. Zhenjiang: Jiangsu University, 2011]
19. Henry A, Doucette WJ, Norton JM, Bugbee B. Changes in crested wheat grass root exudation caused by flood, drought, and nutrient stress [J]. J Enviro Quality, 2007, 36 (3): 904-912
20. 曾祥福, 欧阳西荣. 作物根际养分的影响因子及对作物生长发育的影响[J]. 作物研究, 2011, 25 (4): 414-419 [Zeng XF, OuYang XR. Impact-factors of crop rhizosphere nutrient and its effects on crop growth and development [J]. Crop Res, 2011, 25 (4): 414-419]
21. 李从娟, 李彦, 马健, 范连连, 王吉利. 干旱区植物根际土壤养分状况的对比研究[J]. 干旱区地理, 2011, 34 (2): 222-228 [Li CJ, Li Y, Ma J, Fan LL, Wang JL. Nutrition in the rhizosphere of five xerophytic plants [J]. Arid Land Geo, 2011, 34 (2): 222-228]
22. 韩希英, 宋凤斌. 干旱胁迫对玉米根系生长及根际养分的影响[J]. 水土保持学报, 2006, 20 (3): 170-172 [Han XY, Song FB. Effect of drought stress on root growth and rhizosphere nutrients of Maize (Zea mays L.) [J]. J Soil Water Conserv, 2006, 20 (3): 170-172]
23. Deng Q, Cheng XL, Bowatte S, Newton PCD, Zhang Q. Rhizospheric carbon-nitrogen interactions in a mixed-species pasture after 13 years of elevated CO2 [J]. Agric Ecos Environ, 2016, 235: 134-141
24. Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition [J]. Appl Soil Ecol, 2011, 48 (1): 38-44
25. 汪业勖, 赵士洞, 牛栋. 陆地土壤碳循环的研究动态[J]. 生态学杂志, 1999, 18 (5): 29-35 [Wang YX, Zhao SD, Niu D. Research state of soil carbon cycling in terrestrial ecosystem [J]. Chin J Ecol, 1999, 18 (5): 29-35]
26. 李玲, 仇少君, 刘京涛, 刘庆, 陆兆华. 土壤溶解性有机碳在陆地生态系统碳循环中的作用[J]. 应用生态学报, 2012, 23 (5): 1407-1414 [Li L, Chou SJ, Liu JT, Liu Q, Lu ZH. Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review [J]. Chin J Appl Ecol, 2012, 23 (5): 1407-1414]
27. 孙彩丽, 刘国彬, 马海龙, 薛萐, 张超. 不同沙生植被土壤易氧化有机碳组分及其含量的差异[J]. 草地学报, 2012, 20 (5): 863-869 [Sun CL, Liu GB, Ma HL, Xue J, Zhang C. Variation characteristics and fractions of oxidizable organic carbon indifferent sandy vegetation soil [J]. Acta Agrest Sin, 2012, 20 (5): 863-869]
28. 王晶, 解宏图, 朱平, 李晓云. 土壤活性有机质(碳)的内涵和现代分析方法概述[J]. 生态学杂志, 2003, 22 (6): 109-112 [Wang J, Xie H, Zhu P, Li XY. Cannotation and modern analysis method for active soil organic matter (carbon) [J]. Chin J Ecol, 2003, 22 (6): 109-112]
29. Liu X, Fengmin LI, Liu DQ, Sun GJ. Soil organic carbon, carbon fractions and nutrients as affected by land use in semi-arid region of Loess Plateau of China [J]. Pedosphere, 2010, 20 (2): 146-152
30. 白瀟, 张世熔, 钟钦梅, 李婷, 徐光荣. 中国东部区域土壤活性有机碳分布特征及其影响因素[J]. 生态环境学, 2018, 27 (9): 1625-1631 [Bai X, Zhang SR, Bai, Zhong QM, Li T, Xu GR.2018. Distribution and influencing factors of sol labrle organic carbon among the cast area of China [J]. Ecol Environ Sci, 27 (9): 1625-1631]
31. 胡海清, 陆昕, 孙龙. 土壤活性有机碳分组及测定方法[J]. 森林工程, 2012, 28 (5): 18-22 [Hu HQ, Lu X, Sun L. Research review on soil active organic carbon fractionation and analytical methods [J]. For Eng, 2012, 28 (5): 18-22]
32. Lou Y, Li Z, Zhang T, Zhang T, Liang Y. CO2 emissions from subtropical arable soils of China [J]. Soil Biol Biochem, 2004, 36 (11): 1835-1842
33. Zhao M, Zhou J, Kalbitz K. Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China [J]. Eur J Soil Biol, 2008, 44 (2): 160-165
34. 李晓月, 郑险峰, 周建斌. 不同质地小麦根际土壤有机碳、氮含量及特性研究[J]. 土壤通报, 2012, 43 (3): 610-613 [Li XY, Zhen XF, Zhou JB. Contents and characteristic of organic carbon and nitrogen in wheat rhizosphere with different soil textures [J]. Chin J Soil Sci, 2012, 43 (3): 610-613]
35. 李晓月. 根际土壤不同形态碳、氮的含量及特性研究[D]. 杨凌: 西北农林科技大学, 2011 [Li XY. Contents and characteristic of different form of organic carbon and nitrogen in rhizosphere [D]. Yangling: Northwest A&F University, 2011]
36. 刘方春, 邢尚军, 马海林, 杜振宇, 马丙尧. 干旱生境中接种根际促生细菌对核桃根际土壤生物学特征的影响[J]. 应用生态学报, 2014, 25 (5): 1475-1482 [Liu FC, Xing SJ, Ma HL, Du ZY, Ma BR. Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristicsof walnut ( Juglans regia) rhizosphere soil under drought condition [J]. Chin J Appl Ecol, 2014, 25 (5): 1475-1482]
37. Dijkstra FA, Cheng W. Moisture modulates rhizosphere effects on C decomposition in two different soil types [J]. Soil Biol Biochem, 2007, 39 (9): 2264-2274
38. Henry A, Doucette W, Norton J, Bugbee, B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress [J]. J Environ Qual, 2007, 36 (3): 904-912
39. Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil-root interface [J]. Plant Soil, 2009, 321 (1-2): 5-33
40. Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudation and rhizosphere biology [J]. Plant Physiol, 2003, 132: 44-51
41. Benizri E, Nguyen C, Piutti S, Slezack-Deschaumes S, Philippot L. Additions of maize root mucilage to soil changed the structure of the bacterial community [J]. Soil Biol Biochem, 2007, 39 (5): 1230-1233
42. 薛冉. 生长早期小麦根际土壤养分及微生物对不同水分供应模式响应及其机制的研究[D]. 兰州: 兰州大学, 2017 [Xue R. Responses and mechanisms of rhizospheric nutrients and microbial activity to water supply patterns in early growth stage of wheat [D]. Lanzhou: Lanzhou University, 2007]
43. 黎雪, 张坐省, 党占平, 王灿. 干旱对土壤微生物的影响及其与碳动态的关系[J]. 山西农业科学, 2018, 46 (3): 402-406 [Li X, Zhang ZS, Dang ZP, Wang C. Effects of drought on soil microorganism and its relationship with carbon dynamics [J]. J Shanxi Agric Sci, 2018, 46 (3): 402-406]
44. 李贵才, 韩兴国, 黄建辉, 唐建维. 森林生态系统土壤氮矿化影响因素研究进展[J]. 生态学报, 1999, 21 (7): 1187-1195 [Li GC, Han XG, Huang JH, Tang JW. A review of affecting factors of soil nitrogen mineralization in forest ecosystems [J]. Acta Ecol Sin, 1999, 21 (7): 1187-1195]
45. 李菊梅, 王朝辉, 李生秀. 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J]. 土壤学报, 2003, 40 (2): 232-238 [Li JM, Wang ZH, Li SX. Significance of soil organic matter, total N and mineralizable nitrogen in reflecting soil N supplying capacity [J]. Acta Pedol Sin, 2003, 40 (2): 232-238]
46. Sierra J. Temperature and soil moisture dependence of N mineralization in intact soil cores [J]. Soil Biol Biochem, 1997, 29 (S9-10): 1557-1563
47. Gon?alves JLM, Carlyle JC. Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil [J]. Soil Biol Biochem, 1994, 26 (11): 1557-1564
48. Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils [J]. Global Change Biol, 2010, 15 (4): 808-824
49. Cregger MA, Mcdowell NG, Pangle RE, Pockman WT, Classen AT. Impact of precipitation change on nitrogen cycling in a semi‐arid ecosystem [J]. Funct Ecol, 2015, 28 (6): 1534-1544
50. Shaw MR, Harte J. Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change [J]. Ecol Appl, 2001, 11 (4): 1206-1223
51. Schuur EA, Matson PA. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian Montane Forest [J]. Oecologia, 2001, 128 (3): 431-442
52. Pandey CB, Rai RB, Singh L. Seasonal dynamics of mineral N pools and N-mineralization in soils under home garden trees in South Andaman, India [J]. Agroforestry Syst, 2007, 71 (1): 57-66
53. 庄舜尧,林珈呤,王明光,郭幸荣.水分对台湾塔塔加地区云杉与铁杉林土壤氮素矿化与硝化的影响[J].土壤与环境,2004, 6 (4): 175-184 [Zhang SY, Lin JL, Wang MG, Guo XR. Effects of moisture on soil nitrogen mineralization and nitrification of spruce and hemlock forest in Tatajia area, Taiwan [J]. Soil Environ, 2004, 6 (4): 175-184]
54. Larsen KS, Andresen LC, Beier C, Albert KR, Ambus P, Arndal MF. Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard K, Prieme A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments [J]. Global Change Biol, 2011, 17 (5): 1884-1899
55. 周来良. 干旱对根际土壤酶、氮磷钾及根部有机酸的影响[D]. 重庆: 西南大学, 2009 [Zhou LL, Effects of drought stress on rhizosphere enzyme, N, P, K and root organic acid [D] Chongqing: Southwest University, 2009]
56. 殷睿, 徐振锋, 吴福忠, 杨万勤, 熊莉, 肖洒, 马志良, 李志萍. 川西亚高山不同海拔森林土壤活性氮库及净氮矿化的季节动态[J]. 应用生态学报, 2013, 24 (12): 3347-3353 [Yin R, Xu ZF, Wu FZ, Yang WQ, Xiao S, Ma ZL, Li ZP. Seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization in subalpine forests along an elevational gradient in western Sichuan,China [J]. Chin J Appl Ecol, 2013, 24 (12): 3347-3353]
57. Neff JC, Chapin FS, Vitousek PM. Breaks in Cycle: dissolved organic nitrogen in terrestrial ecosystems [J]. Front Ecol Environ, 2003, 1 (4): 205-211
58. 张洋, 樊芳玲, 周川, 倪九派, 谢德体. 三峡库区农桑配置对地表氮磷流失的影响[J]. 土壤学报, 2016, 53 (1): 189-201 [Zhang Y, Fan FL, Zhou C, Ni JP, Xie DT. Effects of Crop/Mulberry Intercropping on surface nitrogen and phosphorus losses in Three Gorges Reservoir Area [J]. Acta Pedol Sin, 2016, 53 (1): 189-201]
59. Suriyagoda LDB, Ryan MH, Renton M, Lambers H. Above-and below-ground interactions of grass and pasture legume species when grown together under drought and low phosphorus availability [J]. Plant Soil, 2011, 348 (1-2): 281-297
60. Sardans J, Penuelas J. Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest [J]. Plant Soil, 2004, 267 (1-2): 367-377
61. He M, Dijkstra FA. Drought effect on plant nitrogen and phosphorus: A meta-analysis [J]. New Phytol, 2014, 204: 924-931
62. 关松荫. 土壤酶及其研究法[M]. 北京:农业出版社, 1986 [Gua SY, Soil Enzyme and Its Research Method [M]. Beijing: Agriculture Press, 1986]
63. Burns RG. International Conference: Enzymes in the environment: activity, ecology and applications [J]. Soil Biol Biochem, 2000, 32 (13): 1815-1815
64. NdourNdeye YB, Chotte JL, Pate E, Masse D. Rouland C. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions [J]. Appl Soil Ecol, 2001, 18 (3): 229-238
65. 王理德, 王方琳, 郭春秀, 韩福贵, 魏林源, 李发明. 土壤酶学硏究进展[J]. 土壤, 2016, 48 (1): 12-21 [Wang LD, Wang FL, Guo CX, Han FG, Wei LY, Li FM. Review: Progress of soil enzymology [J]. Soils, 2016, 48 (1): 12-21]
66. Benítez E, Melgar R, Sainz H, Gomez M, Nogales R. Enzyme activities in the rhizosphere of pepper (Capsicum annuum, L.) grown with olive cake mulches [J]. Soil Biol Biochem, 2007, 32 (13): 1829-1835
67. 孙彩丽. 根际微生物对植物竞争和水分胁迫的响应机制[D]. 杨凌:西北农林科技大学, 2017 [Response of rhizospheric microbiology to plant competition and moisture stress [D]. Yangling: Northwest A&F University, 2017]
68. 陶佳. 断根与干旱对苹果幼树生长发育及根际环境的影响[D]. 杨凌: 西北农林科技大学, 2015 [Tao J. Effect of root pruning and drought on growth and rhizosphere of young apple tree [D]. Yangling: Northwest A&F University, 2015]
69. 陈娟. 干旱胁迫和外源ABA对生姜生长和根际效应的影响研究[D]. 成都: 四川大学, 2007 [Chen J. Effects of drought stress and exogenous ABA application on growth and rhizospheric effects of ginger (Zingiber officinale Roscoe) [D]. Chengdu: Sichuan University, 2007]
70. Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiol Rev, 2013, 37 (5): 634-663
71. Eisenhauer N, Scheu S, Jousset A. Bacterial diversity stabilizes community productivity [J]. PLoS ONE, 2012, 7 (3): e34517
72. 徐文静, 靳晓东, 杨秋生. 植物根际微生物的影响因素研究进展[J]. 河南农业科学, 2014, 43 (5): 6-12 [Xu WJ, Jin XD, Yang QS. Research progress on factors influencing plant rhizosphere microorganism [J]. J Henan Agric Sci, 2014, 43 (5): 6-12]
73. Koide RT, Fernandez C, Petprakob K. General principles in the community ecology of ectomycorrhizal fungi [J]. Ann For Sci, 2011, 68 (1): 45-55
74. Purahong W, Krueger D. A better understanding of functional roles of fungi in the decomposition process: using precursor rRNA containing ITS regions as a marker for the active fungal community [J]. Ann For Sci, 2012, 69 (6): 659-662
75. 何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义[J]. 土壤, 1997 (2): 61-69 [He ZL. Soil microbial biomass and its nutrient significance in cycle and environmental quality assessment [J]. Soil, 1997 (2): 61-69]
76. 孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强, 曹丛丛. 全球变化对草地土壤微生物群落多样性的影响研究进展[J]. 地理科学进展, 2012, 31 (12): 1715-1723 [Sun LJ, Qi YC, Dong YS, Peng Q, He YT, Liu XC, Jia JQ, Cao CC. Research progresses on the effects of global change on microbial community diversity of grassland soils [J]. Prog Geo, 2012, 31 (12): 1715-1723]
77. Turner BL, Driessen JP, Haygarth PM, Haygarth PM, DMckelvie I. Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils [J]. Soil Biol Biochem, 2003, 35 (1): 187-189
78. Lemanceau P, Offre P, Mougel C, Gamalero E, Dessaux Y, Moenne Y, Berta G. Microbial ecology of the rhizosphere [M]//Lemanceau P. Microbiological Methods for Assessing Soil Quality. CABI Publ, 2006: 228-230
79. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health [J]. Trends Plant Sci, 2012, 17 (8): 478-486
80. Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms [J]. FEMS Microbiol Rev, 2013, 37 (5): 634-663
81. 孙姗姗. 水分胁迫下糖类浸种对玉米萌发及根际微生物的影响[D]. 沈阳: 沈阳农业大学, 2016 [Sun SS. Under water stress carbohydrate soaking on germination of maize and rhizosphere microorganisms [D]. Shenyang: Shenyang Agricultural University, 2016]
82. 刘方春, 邢尚军, 马海林, 陈波, 丁延芹, 杜秉海. 持续干旱对樱桃根际土壤细菌数量及结构多样性影响[J]. 生态学报,2014, 34 (3): 642-649 [Liu FC, Xing SJ, Ma HL, Chen B, Ding YQ, Du BH. Effects of continuous drought on soil bacteria populations and community diversity in sweet cherry rhizosphere [J]. Acta Ecol Sin, 2014, 34 (3): 642-649]
83. 李国斌, 李光跃, 孙窗舒, 贾鑫, 陈贵林. 干旱胁迫对蒙古黄芪生物量及其根际微生物种群数量的影响[J]. 西北植物学报, 2015, 35 (9): 1868-1874 [Li GB, Li GY, Sun CS, Jia X,Chen GL. Rhizosphere microbe quantity and biomass accumulation of Astragalus mongholicus under drought stress [J]. Acta Bot Bor-Occid Sin, 2015, 35 (9): 1868-1874
84. 肖列. CO2浓度升高、干旱胁迫和施氮对白羊草生长和根际微生物的影响[D]. 杨凌: 西北农林科技大学, 2015 [Xiao L. Combined effects of elevated CO2, drought stress and nitrogen application on the growth of Bothriochloa ischaemum and its soil micobial properties [D]. Yangling: Northwest A&F University, 2015]
85. Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J. Growth rate-stoichiometry couplings in diverse biota [J]. Ecol Lett, 2003, 6 (10): 936-943
86. Blagodatskaya EV, Anderson TH. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils [J]. Soil Biol Biochem, 1998, 30 (10-11): 1269-1274
87. Holtkamp R, Kardol P, Wal AVD, Putten WHVD, Ruiter PCD. Soil food web structure during ecosystem development after land abandonment [J]. Appl Soil Ecol, 2008, 39 (1): 23-34
88. Ingwersen J, Poll C, Streck T, Kandeler E. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface [J]. Soil Biol Biochem, 2008, 40 (4): 864-878
89. 孔钰凤. 野生和栽培大豆根际微生物对干旱胁迫的响应及反馈[D]. 北京: 中国科学院大学, 2017 [Kong YF. The feedback and response of rhizospheric microbial communities of wild and cultivated soybean to dought stress [D]. Beijing: University of Chinese Academy of Sciences, 2017]
90. Kohler J, Knapp BA, Waldhuber S, Caravaca F, Roldan A, Insam H. Effects of elevated CO2, water stress, and inoculation with Glomus intraradices or Pseudomonas mendocinaon lettuce dry matter and rhizosphere microbial and functional diversity under growth chamber conditions [J]. J Soils Sedim, 2010, 10 (8): 1585-1597
91. Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, Kim YM, Zink EM, Engbrecht KM, Wang Y, Gao C, DeGraaf S, Madera MA, Sievert JA, Hollingsworth J, Birdseye D, Scheller HV, Hutmacher R, Dahlberg J, Jansson C, Taylor JW, Lemaux PG, Coleman-Derr D. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria [J]. PNAS, 2018, 115 (18): 4284-4293
92.

相似文献/References:

[1]王红梅,包维楷,李芳兰.不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应[J].应用与环境生物学报,2008,14(06):757.[doi:10.3724/SP.J.1145.2008.00757]
 WANG Hongmei,BAO Weikai** & LI Fanglan.Physiological and Biochemical Responses of Two-years-old Sophora davidii Seedling Leaves to Different Water Stresses[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):757.[doi:10.3724/SP.J.1145.2008.00757]
[2]张春梅,邹志荣,张志新,等.外源亚精胺对模拟干旱胁迫下番茄幼苗活性氧水平和抗氧化系统的影响[J].应用与环境生物学报,2009,15(03):301.[doi:10.3724/SP.J.1145.2009.00301]
 ZHANG Chunmei,ZOU Zhirong,ZHANG Zhixin,et al.Effects of Exogenous Spermidine on Reactive Oxygen Levels and Antioxidative System of Tomato Seedling under Polyethlene Glycol Stress[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):301.[doi:10.3724/SP.J.1145.2009.00301]
[3]马守臣,徐炳成,李凤民,等.根修剪对冬小麦根系效率、水分利用及产量的影响[J].应用与环境生物学报,2009,15(05):606.[doi:10.3724/SP.J.1145.2009.00606]
 MA Shouchen,XU Bingcheng,LI Fengmin & HUANG Zhanbin.Effect of Root Pruning on Root Efficiency, Water Use and Yield of Winter Wheat[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):606.[doi:10.3724/SP.J.1145.2009.00606]
[4]余孟好,孙谷畴,赵平.马占相思林冠层水分利用效率的气候调节[J].应用与环境生物学报,2010,16(03):309.[doi:10.3724/SP.J.1145.2010.00309]
 YU Menghao,SUN Guchou,ZHAO Ping.Climatic Control of Water Use Efficiency of Acacia mangium Forest Canopy[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):309.[doi:10.3724/SP.J.1145.2010.00309]
[5]孙霞,高信芬.聚乙二醇(PEG)模拟干旱胁迫对干旱河谷5种木蓝种子萌发的影响[J].应用与环境生物学报,2010,16(03):317.[doi:10.3724/SP.J.1145.2010.00317]
 SUN Xia,GAO Xinfen.Effect of Polyethylene Glycol (PEG) Simulated Drought Stress on Seed Germination of Five Species of Indigofera L. from Dry Valleys[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):317.[doi:10.3724/SP.J.1145.2010.00317]
[6]蔡海霞,吴福忠,杨万勤.模拟干旱胁迫对岷江干旱河谷—山地森林交错带4种乡土植物抗氧化酶系统的影响[J].应用与环境生物学报,2010,16(04):478.[doi:10.3724/SP.J.1145.2010.00478]
 CAI Haixia,WU Fuzhong,YANG Wanqin.Effect of Simulated Drought Stress on Antioxidant Enzyme System of Four Native Species in the Ecotone Between the Minjiang Dry Valley and Mountain Forest[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):478.[doi:10.3724/SP.J.1145.2010.00478]
[7]盛江梅,吴小芹,侯亮亮,等.一株黑松-美味牛肝菌菌根辅助细菌的筛选及鉴定[J].应用与环境生物学报,2010,16(05):701.[doi:10.3724/SP.J.1145.2010.00701]
 SHENG Jiangmei,WU Xiaoqin,HOU Liangliang,et al.Isolation and Identification of a MHB Strain from the Rhizosphere Soil of Pinus thunbergi Inoculated with Boletus edulis[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):701.[doi:10.3724/SP.J.1145.2010.00701]
[8]蔺万煌,HOFMANN Rainer W,STILWELL Stephen.干旱胁迫下5种三叶草的生长和生理反应[J].应用与环境生物学报,2011,17(04):580.[doi:10.3724/SP.J.1145.2011.00580]
 LIN Wanhuang,HOFMANN Rainer W,STILWELL Stephen.Growth of Five Species of Trifolium and Their Physiological Responses to Drought Stress[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):580.[doi:10.3724/SP.J.1145.2011.00580]
[9]孙继亮,李六林,陶书田,等.干旱胁迫和复水对梨幼树生理特性的影响[J].应用与环境生物学报,2012,18(02):218.[doi:10.3724/SP.J.1145.2012.00218]
 SUN Jiliang,LI Liulin,TAO Shutian,et al.Effects of Drought Stress and Rewatering on Physiological Characteristics of Pear Seedling[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):218.[doi:10.3724/SP.J.1145.2012.00218]
[10]刘方春,邢尚军,马海林,等.PGPR生物肥对甜樱桃(Cerasus pseudocerasus)根际土壤生物学特征的影响[J].应用与环境生物学报,2012,18(05):722.[doi:10.3724/SP.J.1145.2012.00722]
 LIU Fangchun,XING Shangjun,MA Hailin,et al.Effect of PGPR Fertilizer on Biological Characteristics in Cerasus pseudocerasus Rhizosphere[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):722.[doi:10.3724/SP.J.1145.2012.00722]

更新日期/Last Update: 2019-10-25