|本期目录/Table of Contents|

[1]杨芳,王振孟,朱大海,等.常绿阔叶林林下6种木本植物叶片非结构性碳水化合物的动态特征[J].应用与环境生物学报,2019,25(05):1075-1083.[doi:10.19675/j.cnki.1006-687x.2018.11018]
 YANG Fang,WANG Zhenmeng,et al.Dynamic characteristics of non-structural carbohydrates in leaves of six woody plants from an evergreen broad-leaved forest[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1075-1083.[doi:10.19675/j.cnki.1006-687x.2018.11018]
点击复制

常绿阔叶林林下6种木本植物叶片非结构性碳水化合物的动态特征
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1075-1083
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Dynamic characteristics of non-structural carbohydrates in leaves of six woody plants from an evergreen broad-leaved forest
作者:
杨芳王振孟朱大海阳小成向双
1成都理工大学环境学院 成都 610059 2中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室 成都 610041 3龙溪-虹口国家级自然保护区管理局 成都 611830
Author(s):
YANG Fang1 2 WANG Zhenmeng2 ZHU Dahai3 YANG Xiaocheng1 & XIANG Shuang2**
1 College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China 2 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3 Longxi-Hongkou National Nature Reserve Administration, Chengdu 611830, China
关键词:
非结构性碳水化合物(NSC)可溶性糖淀粉光合色素比叶重(LMA)亚热带常绿阔叶林
Keywords:
non-structural carbohydrates (NSC) soluble sugar starch photosynthetic pigment leaf mass per area (LMA) subtropical evergreen broad-leaved forest.
分类号:
Q945.79
DOI:
10.19675/j.cnki.1006-687x.2018.11018
摘要:
植物叶片非结构性碳水化合物(NSC)不仅为植物代谢提供重要能量,还能一定程度上反映植物对外界环境的适应策略. 以亚热带常绿阔叶林林下6种植物:茶(Camellia sinesis)、细枝柃(Eurya loquaiana)、润楠(Machilus pingii)、短刺米槠(Castanopsis carlesii)、大叶山矾(Symplocos grandis)和薄叶山矾(Symplocos anomala)为对象,研究各物种抽枝展叶进程中叶片大小、比叶重(LMA)、光合色素以非结构性碳水化合物及其组分含量的动态变化,分析NSC组分之间及与光合色素与LMA间的相互关系,探讨展叶过程中引起叶片NSC差异的原因. 结果表明:(1)各物种单叶面积随叶片展开而增加直至8月下旬达到最大,为9.20(茶)-40.81 cm2(大叶山矾);而LMA在展叶初期下降后随叶片展开逐步升高,直到次年1月下旬还在持续缓慢增加,因各物种不同,最大值为82.90-152.10 g/m2;光合色素则在展叶进程中逐渐增加,6月下旬达到较高值后在整个夏秋季维持较高的含量,次年1月有所下降. (2)在整个当年生叶片生长进程中,6种植物叶片可溶性糖含量总体上由展叶初期逐渐增加,而淀粉含量随着叶片的生长成熟逐渐降低;各物种NSC含量为87.00(薄叶山矾)-163.35 mg/g(细枝柃),除大叶山矾和薄叶山矾外,NSC含量随着叶片生长进程逐渐增加;(3)各物种可溶性糖含量随着淀粉含量的增加而降低,叶绿素含量随着LMA的增加而显著增加,可溶性糖与LMA具有显著的正相关关系,而淀粉与LMA呈显著负相关(R2 = 0.51-0.86,P < 0.004),表明展叶后期部分淀粉转化为可溶性糖,这与展叶后期林内光资源的可利用性以及植物的生理活动相关. 综上所述,随着展叶进程,非结构性碳水化合物及其组分具有不同的变化规律,一方面与叶片增大增厚进程中的生理活动有关,另一方面也反映了叶片功能属性间的权衡关系,研究结果可为阐明亚热带常绿阔叶林林下木本植物展叶期的碳代谢提供理论基础,亦丰富了森林植物生活史对策理论. (图6 参53)
Abstract:
Non-structural carbohydrates (NSC) in plant leaves not only reflect the carbon supply of the plants but also their adaptation strategies to environmental conditions. Six species of subtropical woody plants from an evergreen broad-leaved forest, including Camellia sineis, Eurya loquaiana, Machilus pingii, Castanopsis carlesii, Symplocos grandis, and Symplocos anomala, were evaluated in this study. Dynamic changes in leaf area, leaf mass per area (LMA), photosynthetic pigment content, and non-structural carbohydrates and their components in leaves at different developmental stages were monitored, and the relationships between these traits were analyzed. The reasons for the differences in NSC among leaves are discussed. (1) During the entire leaf expansion process, individual leaf area increased over time until homeostasis was attained, and maximum values were observed in late August and ranged from 9.20 cm2 (C. sinesis) to 40.81 cm2 (S. grandis). Leaf mass per area decreased during the initial leaf spreading period and then continuously increased until the end of January of the following year. Maximum LMA values varied between different species, and the maximum values ranged between 82.90-152.10 g/m2. Chlorophyll content increased during the entire year. High chlorophyll content was maintained throughout summer and autumn after reaching high values in late June and then slightly decreased in January of the following year. (2) Soluble sugar and NSC contents in the leaves of the six plants showed similar trends and gradually increased from the early stage of leaf expansion through the full expansion stage, whereas starch content presented the opposite trend. NSC content ranged from 87.00 mg/g (S. anomala) to 163.35 mg/g (E. loquaiana) and gradually increased with the leaf growth process, except in S. grandis and S. anomala. (3) Soluble sugar content decreased as starch content increased and was positively correlated with LMA, and chlorophyll content increased as LMA increased, whereas starch content was negatively correlated with LMA (R2 = 0.51-0.86,P < 0.004). This suggests that starch may convert to soluble sugar during the late stage of leaf development, which may be due to light availability and physical activities of the plants in the forest. The aforementioned results demonstrate that NSCs in the leaves of undergrowth plants from an evergreen broad-leaved forest show different dynamic changes and storage characteristics during different leaf development stages. Changes in photosynthetic pigments and LMA were related to NSC accumulation. NSC and the components varied with leaf development stage, which may be related to physical activities during leaf expansion and thickening and may be reflected in trade-off relationships among functional traits. These results provide a theoretical basis for elucidating carbon metabolism during the unfolding stage in subtropical woody species from evergreen broad-leaved forests and expand upon the life history theories of forest plants adapting to the understory environment.

参考文献/References:

1. Ogren E, Nilsson T, Sundblad LG. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures:indications of different sensitivities of spruce and pine [J]. Plant Cell Environ, 1997, 20 (2): 247-253
2. Dietze MC, Sala A, Carbone MS, Czimczik CL, Mantooth JA, Richardson AD, Vargas R. Nonstructural carbon in woody plants [J]. Annu Rev Plant Biol, 2014, 65: 667-668
3. Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Wang XD, Zhu WZ. Mobile carbohydrates in Himalayan treeline trees: evidence for carbon limitation but not for growth limitation [J]. Tree Physiol, 2008, 28 (8): 1287-1296
4. Li MH, Hoch G, K?rner C. Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline [J]. Trees, 2002, 16: 331-337
5. 潘庆明, 韩兴国, 白永飞, 杨景成. 植物非结构性贮藏碳水化合物的生理生态学研究进展[J]. 植物学通报, 2002, 19 (1): 30-38 [Pan QM, Han XG, Bai YF, Yang JC. Advances in physiology and ecology studies on stored non-structure carbohydrates in plants [J]. Chin Bull Bot, 2002, 19 (1): 30-38]
6. Li MH, Xiao WF, Shi PL, Wang SG, Zhong YD, Liu XL, Wang XD, Cai XH. Nitrogen and carbon source-sink relationships in trees at Himalayan treeline compared with lower elevations [J]. Plant Cell Environ, 2008, 31 (10): 1377-1387
7. Slewinski TL. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production [J]. J Exp Bot, 2012, 63 (13): 4647-4670
8. Hoch G, K?rner C. The carbon charging of pines at the climatic treeline a global comparison [J]. Oecologia ,2003, 135 (1): 10-21
9. Trom ER, Sheath GW, Bryant AM. Seasonal variations in total nonstructural carbohydrates major element levels in perennial ryegrass and paspalum in a mixed pasture [J]. New Zeal J Agric Res, 1989, 32 (2): 157-165
10. Hoch G, Richter A, K?rner C. Non-structural carbon compounds in temperate forest trees [J]. Plant Cell Environ, 2003, 26: 1067-1081
11. Yee D, Tissue DT. Relationships between non-structural carbohydrate concentration and flowering in a subtropical herb, Heliconia caribaea (Heliconiaceae) [J] . Caribb J Sci, 2005, 41 (2): 243-249
12. Palacio S, Millard P, Maestro M, Montserrat-Marti G. Non-structural carbohydrates and nitrogen dynamics in mediterranean sub-shrubs: an analysis of the functional role of overwintering leaves [J]. Plant Biol, 2007, 9 (1): 49-58
13. Bansal S, Germino MJ. Temporal variation of nonstructural carbohydrates in montane conifers: similarities and differences among developmental stages, species and environmental conditions [J]. Tree Physiol, 2009, 29 (4): 574-575
14. Latt CR, Nair P, Kang BT. Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate [J]. For Ecol Manage, 2001, 146 (1): 145-158
15. 李娜妮, 何念鹏, 于贵瑞. 中国东北典型森林生态系统植物叶片的非结构性碳水化合物研究[J]. 生态学报, 2016, 36 (2): 430-438 [Li NN, He NP, Yu GR. Evaluation of leaf non-structural carbohydrate contents in typical forest ecosystems in northeast China [J]. Acta Ecol Sin, 2016, 36 (2) : 430-438]
16. 施征, 白登忠, 雷静品, 肖文发. 祁连圆柏光合色素与非结构性碳水化合物含量对海拔变化的响应[J]. 西北植物学报, 2012, 32 (11): 2286-2292 [Shi Z, Bai DZ, Lei JP, Xiao WF. Variations of chloroplast pigments and non-structural carbohydrates of Sabina przewalskii alone altitude in Qilian mountains timberline [J]. Acta Bot Sin, 2012, 32 (11): 2286-2292]
17. Poorter L. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species [J]. Funct Ecol, 2001, 15: 113-123
18. Liu WD, Su JR. Effects of light acclimation on shoot morphology, structural, and biomass allocation of two Xaxus species in southwestern China [J]. Sci Rep, 2016 (6): 353-384
19. Poorter L, Kitajima K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species [J]. Ecol, 2007, 88 (4): 1000-1011
20. Myers JA, Kitajima K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest [J]. J Ecol, 2007, 95: 33-395
21. Gaucher C, Gougeon S, Manffette Y, Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings [J]. Tree Physiol, 2005, 25: 93-100
22. Veneklaas E, den Ouden F. Dynamics of non-structural carbohydrates in two Ficus species after transfer to deep shade [J]. Environ Exp Bot, 2005, 54: 148-154
23. Rosati A, Esparza GD, Ejong TM, Pearcy RW. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees [J]. Tree Physiol, 1999, 19: 173-180
24. Grassi G, Colom MR, Minotta G. Effect of nutrient supply on photosynthetic acclimation and photo inhibition of one-year-old foliage of Picea abies [J]. Physiol Plantarum, 2001, 111: 245-254
25. Vincent G. Leaf photosynthetic capacity and nitrogen content adjustment to canopy openness in tropical forest tree seedlings [J]. J Trop Ecol, 2001, 17: 495-509
26. Walters MB, Reich PB. Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? [J]. New Phytol, 1999, 143: 143-154
27. Poorter L, Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species [J]. Ecology, 2006, 87: 1733-1743
28. Kobe RK. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth [J]. Oikos, 1997, 80: 226-233
29. Kaelke CM, Dawson JO. The accretion of nonstructural carbohydrates changes seasonally in Alnus incana ssp. rugosa in accord with tissue type, growth, N allocation, and root hypoxia [J]. Symbiosis, 2005, 39: 61-66
30. Dymova OV, Golovko TK. Pigment apparatus in ajuga reptans plants as affected by adaptation to light growth conditions [J]. Russ J Plant Physl, 2007, 54: 39-45
31. Lichtenthal HK, Babani F, Langsdorf G. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees [J]. Photosynth Res, 2007, 93: 235-244
32. Wyka TP, Duarte HM, Lüttge U. Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanch?e daigremontiana Hamet et perrier [J]. Plant Biol, 2005, 7: 176-181
33. 李晓琴, 张果, 马丹炜. 青城山山地黄壤形成特点及性状研究[J]. 四川师范大学学报(自然科学版), 2000, 23 (4): 445-447 [Li XQ, Zhang G, Ma DW. Study on specific property of yellow earth in Qingcheng mountain [J]. J Sichuan Norm Univ (Nat Sci), 2000, 23 (4): 445-447]
34. 曾晓阳, 高永恒. 青城山常绿阔叶林冠层结构对植被生物多样性的影响[J]. 甘肃农业大学学报, 2017, 52 (2): 65-70 [Zeng XY, Gao YH. Effect of canopy structure on plant diversity of evergreen broadleaved forest in Qingcheng mountain [J]. J Gansu Agric Univ, 2017, 52 (2): 65-70]
35. Hoch G, Popp M, K?rner C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline [J]. Oikos, 2002, 98: 361-374
36. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances [J]. Anal Chem, 1956, 28 ( 3): 350-356
37. 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006 [Wang XK. Principles and Techniques of Plant Physiology and Biochemistry [M]. 2nd ed. Beijing: Higher Education Press, 2006]
38. Xiang S, Reich PB, Sun S, Atkin OK. Contrasting leaf trait scaling relationships in tropical and temperate wet forest species [J]. Funct Ecol, 2013, 27 (2): 522-534
39. 王逸然, 郑成洋, 曾发旭. 内蒙古白音敖包沙地云杉生长季非结构性碳水化合物含量动态[J]. 北京大学学报(自然科学版), 2016, 52 (5): 967-976 [Wang YR, Zheng CY, Zeng FX. Seasonal dynamic changes of non-structural carbohydrate in tissues of Picea mongolica in Baiyinaobao [J]. Acta Sci Nat Univ Pek (Nat Sci), 2016, 52 (5): 967-976]
40. 张海燕, 王全宽, 王兴昌. 温带12 个树种新老树枝非结构性碳水化合物浓度比较[J]. 生态学报, 2013, 33 (18): 5675-5685 [Zhang HY, Wang CK, Wang XC. Comparison of concentrations of non-structural carbohydrates between new twigs and old branches for 12 temperate species [J]. Acta Ecol Sin, 2013, 33 (18): 5675-5685]
41. 朱志红, 孙尚奇. 高寒草甸矮生嵩草非结构碳水化合物的变化[J]. 植物学报, 1996, 38 (11): 895-901 [Zhu ZH, Sun SQ. Changes of total non-structural carbohydrates of Kobresia humilis in alpine meadow [J]. Acta Bot Sin, 1996, 38 (11): 895-901]
42. 李守剑, 宋贺, 王进闯, 张远彬. 大气CO2浓度和温度升高对岷江冷杉(Abies faxoniana)幼苗针叶化学特性的影响[J]. 应用与环境生物学报, 2012, 18 (6): 1027-1032 [Li SJ, Song H, Wang JC, Zhang YB. Effects of elevated CO2 and temperature on needle chemistry of Abies faxoniana seedlings [J]. Chin J Appl Environ Biol, 2012, 18 (6): 1027-1032]
43. 欧阳明, 杨清培, 祁红燕, 刘骏, 马思琪, 宋庆妮. 亚热带落叶与常绿园林树种非结构性碳水化合物的季节动态比较[J]. 南京林业大学学报: 自然科学版, 2014, 38 (2): 105-110 [Ou YM, Yang QM, Qing HY, Liu J, Ma SQ, Song QN. A comparison of seasonal dynamics of nonstructural carbohydrates for deciduous and evergreen landscape trees in subtropical region, China [J]. J Nanjing For Univ: Nat Sci Ed, 2014, 38 (2): 105-110]
44. Moraga SP, Escobar R, Valenzuela AS. Resistance to freezing in three Eucalyptus globulus Labill subspecies [J]. Electron J Biotechnol, 2006, 9 (3): 310-314
45. Kerepesi I, Banyai-Stefanovits E, Galiba G. Cold acclimation and abscisic acid induced alterations in carbohydrate content in calli of wheat genotypes differing in frost tolerance [J]. J Plant Physiol, 2004, 161 (1): 131-133
46. Kozlowski TT. Carbohydrate sources and sinks in woody plants [J]. Bot Rev, 1992, 58: 107-222
47. Zhang HY, Dong ST, Gao RZ. Research progresses of starch in plants [J]. Annu Rev Ecol Syst, 1990: 423-427
48. Barbaroux C, Bréda N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees [J]. Tree Physiol, 2002, 22 (17): 1201-1210
49. 赵镭, 杨海波, 王达力, 张娜, 王希华. 浙江天童常见种幼苗的光合特性及非结构性碳水化合物储存[J]. 华东师范大学学报(自然科学版), 2011 (4): 36-44 [Zhao L, Yang HB, Wang, DL, Zhang N, Wang XH. Seedlings photosynthesis traits and non-structural carbohydrate storage of common species in Tiantong National Forest Park, Zhengjiang Provence [J]. J E Chin Norm Univ (Nat Sci Ed), 2011 (4): 36-44]
50. 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35 (12): 1245-1255 [Yu LM, Wang CK, Wang XC. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China [J]. Chin J Plant Ecol, 2011, 35 (12): 1245-1255]
51. 柳凤娟, 向双, 阳小成, 孙书存. 两种光照生境下4种常绿阔叶树的单位叶面积干重、光合能力与化学防御物质含量比较[J]. 应用与环境生物学报, 2010, 16 (4): 462-467 [Liu FJ, Xiang S, Yang XC, Sun SC. Comparative study on leaf mass per area, photosynthetic capacity, and chemical defense traits of four subtropical evergreen tree species in contrasting light conditions [J]. Chin J Appl Environ Biol, 2010, 16 (4):462-467]
52. 王凯, 雷虹, 夏扬, 于国庆. 杨树幼苗非结构型碳水化合物对增加降水和氮添加的响应[J]. 应用生态学报, 2017, 28 (2): 399-407 [Wang K, Lei H, Xia Y, Yu GQ. Responses of non-structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition [J]. Chinese J Appl Ecol, 2017, 28 (2): 399-407]
53. Li MH, Hoch G, K?rner C. Spatial variability of mobile carbohydrates within Pinus cembra tress at the alpine treeline [J]. Phyton, 2001, 41 (2): 203-213
54.

相似文献/References:

[1]任安芝,高玉葆,李侠.内生真菌感染对黑麦草若干抗旱生理特征的影响[J].应用与环境生物学报,2002,8(05):535.
 REN Anzhi,et al..Effect of fungal endophyte infection on some physiological characters of Lolium perenne under drought conditions[J].Chinese Journal of Applied & Environmental Biology,2002,8(05):535.
[2]杨斌 彭长辉** 张贤 刘伟国 段敏 王猛.干旱胁迫对刺槐幼苗叶片氮含量、光合速率及非结构性碳水化合物的影响*[J].应用与环境生物学报,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2019.03011]
 YANG Bin,PENG Changhui,**,et al.Effects of drought stress on leaf nitrogen, photosynthetic rate and non-structural carbohydrates of Robinia pseudoacacia L. seedlings *[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1.[doi:10.19675/j.cnki.1006-687x.2019.03011]

更新日期/Last Update: 2019-10-25