|本期目录/Table of Contents|

[1]任亚峰,韦唯,李冬雪,等.葡萄灰霉病病原菌鉴定及生物学特性[J].应用与环境生物学报,2019,25(05):1139-1144.[doi:10.19675/j.cnki.1006-687x.2018.09026]
 REN Yafeng,WEI Wei,LI Dongxue,et al.Identification and biological characteristics of grape gray mold pathogen[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1139-1144.[doi:10.19675/j.cnki.1006-687x.2018.09026]
点击复制

葡萄灰霉病病原菌鉴定及生物学特性
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年05期
页码:
1139-1144
栏目:
研究论文
出版日期:
2019-10-31

文章信息/Info

Title:
Identification and biological characteristics of grape gray mold pathogen
作者:
任亚峰韦唯李冬雪王勇谈孝凤陈卓
1贵州大学绿色农药与农业生物工程教育部重点实验室 贵阳 550025 2贵州大学农学院 贵阳 550025 3贵州省植保植检站 贵阳 550001
Author(s):
REN Yafeng1 WEI Wei1 2 LI Dongxue1 WANG Yong2 TAN Xiaofeng3 & CHEN Zhuo1**
1 Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China 2Agricultural College of Guizhou University, Guiyang 550025, China 3 Plant Protection Station of Guizhou Province, Guiyang 550001, China
关键词:
葡萄灰霉病灰葡萄孢鉴定致病性系统发育分析生物学特性
Keywords:
grape gray mold Botrytis cinerea identification pathogenicity phylogenetic analysis biological characteristics
分类号:
S432
DOI:
10.19675/j.cnki.1006-687x.2018.09026
摘要:
为探讨贵州省福泉市葡萄灰霉病的流行机制与防治研究,对该地区病害的病原菌进行鉴定和生物学特性. 从葡萄灰霉病样品中分离纯化了多个病原菌菌株,并进行了形态特征观察和多基因系统发育树分析;选择代表性菌株GZFQ-1进行葡萄的茎、叶片和果实的致病性分析;同时,对GZFQ-1菌株在不同温度、pH条件下的生长情况及对不同碳源和氮源的利用进行研究. 根据病原菌的形态学和分子特征,将贵州省福泉市葡萄灰霉病菌鉴定为灰葡萄孢菌(Botrytis cinerea). 该菌株在PDA培养基上生长的最适温度是25 ℃,其次为22 ℃;在pH值为5-9的范围内,该菌株均可生长,且在pH值5-8范围内,生长相对较快;以葡萄糖为碳源,以硝酸钾、蛋白胨、组氨酸和异亮氨酸为氮源时,利于菌丝发育,同时,碳、氮源也会影响菌株的生长速率和色素形成. 综上所述,发生在贵州省福泉市葡萄灰霉病的病原菌为B. cinerea,且能够引起嫩茎、叶和果实发病,这一结论可为该地区葡萄灰霉病的有效防治提供理论指导. (图6 表2 参32)
Abstract:
This study identified the pathogen responsible for grape gray mold in Fuquan City, Guizhou Province, and studied its biological characteristics to provide a theoretical basis for the epidemic mechanism of the disease and its control. Many strains were isolated from samples of diseased plants. The morphology of the pathogen was observed and phylogenetic analysis was performed. Pathogenicity tests were performed on the stems, leaves, and fruits of grape plants using the representative strain, GZFQ-1. Strain GZFQ-1 was observed on PDA under different temperatures and different pH conditions. The strain’s utilization of nitrogen and carbon sources was also evaluated. Based on morphological and molecular biological characteristics, strain GZFQ-1 was identified as B. cinerea MUCL87. The optimum temperature for its growth was 25 ℃, followed by 22 ℃; the strain could grow at pH 5–9 but grew faster at pH 5–8. Glucose was the optimum carbon source and potassium nitrate, peptone, histidine, and isoleucine were the optimum nitrogen sources for strain GZFQ-1. However, different carbon and nitrogen sources influenced mycelial growth and pigment formation. In conclusion, B. cinerea was found to be the pathogen responsible for grape gray mold in Fuquan City, Guizhou Province. It was found to damage tender stems, leaves, and fruits. This result may provide theoretical guidance for the prevention and treatment of grape gray mold in this area.

参考文献/References:

1. Williamson B, Tudzynski B, Tudzynski P, Van KJ. Botrytis cinerea: the cause of grey mould disease [J]. Mol Plant Pathol, 2007, 8: 561-580
2. Lemos WJ Jr, Bovo B, Nadai C, Crosato G, Carlot M, Favaron F, Giacomini A, Corich V. Biocontrol ability and action mechanism of Starmerella bacillaris (Synonym Candida zemplinina) isolated from wine musts against gray mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation [J]. Front Microbiol, 2016, 7: 1249
3. Giraud T, Fortini D, Levis C, Leroux P, Brygoo Y. RFLP markers show genetic recombination in Botryotinita fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species [J]. Mol Biol Evol, 1997, 14 (11): 1177-1185
4. Fournier E, Giraud T, Albertini C, Brygoo Y. Partition of the Botrytis cinerea complex in France using multiple gene genealogies [J]. Mycologia, 2005, 97 (6): 1251-1267
5. Walker AS, Gautier AL, Confais J, Martinho D, Viaud M, Le P, Cheur P, Dupont J, Fournier E. Botrytis pseudocinerea, a new cryptic species causing gray mold in french vineyards in sympatry with Botrytis cinerea [J]. Phytopathol, 2011, 101 (12): 1433-1445
6. Grant-Downton RT, Terhem RB, Kapralov MV, Mehdi S, Rodriguez-Enriquez MJ, Gurr SJ, van Kan JA, Dewey FM. A novel Botrytis species is associated with a newly emergent foliar disease in cultivated Hemerocallis [J]. PLoS ONE, 2014, 9 (6): e89272
7. Saito S, Margosan D, Michailides TJ, Xiao CL. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes [J]. Mycologia, 2016, 108 (2): 330-343
8. Garfinkel AR, Lorenzini M, Zapparoli G, Chastagner GA. Botrytis euroamericana, a new species from peony and grape in North America and Europe [J]. Mycologia, 2017, 109 (3): 495-507
9. O’neillt M, Shtinberg D, Elad Y. Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea [J]. Plant Dis, 1997, 81 (1): 36-40
10. Ko Y, Yao KS, Chen CY, Lin CH. First report of gray mold disease of sponge gourd (Luffa cylindrica) caused by Botrytis cinerea in Taiwan [J]. Plant Dis, 2007, 91 (9): 1199
11. Rivera MC, Lopez SE. First report of Botrytis cinerea on pansy flowers in Buenos Aires [J]. Plant Dis, 2004, 88 (10): 1164
12. Kim JY, Aktaruzzaman M, Afroz T, Kim BS, Shin HD. First report of gray mold caused by Botrytis cinerea on red raspberry (Rubus idaeus) in Korea [J]. Plant Dis, 2016, 100 (2): 533-534
13. Chang KF, Howard RJ, Hwang SF. First report of Botrytis blight, caused by Botrytis cinereaon coneflowers [J]. Plant Dis, 1997, 81 (12): 1461
14. Aktaruzzaman M, Afroz MT, Kim BS, SHIN HD. First report of gray mold caused by Botrytis cinerea on marigold (Tagetes erecta) in Korea [J]. Plant Dis, 2018, 102 (8): 1656
15. Xue LH, Liu Y, Li CJ. First report of Botrytis cinerea causing soft rots in Trifoliumrepens in China [J]. Plant Dis, 2017, 101 (6): 1050
16. Swart WJ, Tesfaendrias MT, Terblanche J. First report of Botrytis cinerea on kenaf in South Africa [J]. Plant Dis, 2007, 85 (9): 1032
17. Kwon JH, Cheon MG, Choi O, Kim J. First report of Botrytis cinerea as a postharvest pathogen of blueberry in Korea [J]. Mycobiol, 2011, 39 (1): 52-53
18. 田世平. 低温对葡萄孢菌(Botrytis cinerea)菌丝生长和孢子萌发以及对贮藏菊苣侵染力的影响[J]. 植物病理学报, 2001, 31 (1): 56-62 [Tian SP. Effects of low temperature on growth and spore germination of Botrytis cinerea in vitro and on its infectivity to stored chicory [J]. Acta Phytopathol Sin, 2001, 31 (1): 56-62]
19. Mcfeeters H, McFeeters RL. Emerging approaches to inhibit Botrytis cinerea [J]. Int J Mod Bot, 2012, 2 (5): 127-144
20. 唐冬梅. 贵州省水晶葡萄产业发展现状及建议[J]. 河北林业科技, 2015 (4): 112-114 [Tang DM. Development status and suggestions for crystal grape industry in Guizhou Province [J]. Hebei For Sci Technol, 2015 (4): 112-114]
21. 方中达. 植病研究方法[M]. 北京: 中国农业出版社, 1998: 46-50 [Fang ZD. Research Method for Plant Pathology [M]. 3nd ed. Beijing: China Agriculture Press, 1998: 46-50]
22. 童蕴慧, 徐敬友, 陈夕军. 灰葡萄孢分生孢子萌发的条件研究[J]. 江苏农业研究, 1999, 20 (4): 29-31 [Tong YH, Xu JY, Chen XJ. Factors affecting spore germination of Botrytis cinerea [J]. Jiangsu Agric Res, 1999, 20 (4): 29-31]
23. 于晓丽, 储昭辉, 李宝燕, 林霞, 王培松, 王英姿. 烟台地区樱桃茎腐病病原菌、致病性及流行条件[J]. 果树学报, 2017, 34 (11): 1458-1466 [Yu XL, Chu ZH, Li BY, Lin X, Wang PS, Wang YZ. Pathogens, pathogenicity and epidemic conditions of cherry stem rot in Yantai [J]. J Fruit Sci, 2017, 34 (11): 1458-1466]
24. 赵晓珍, 王勇, 李冬雪, 任亚峰, 陈卓. 茶树新病害病原菌Phomasegeticola var. camelliae的形态学及系统学研究[J]. 植物病理学报, 2018, 48 (4): 556-559 [Zhao XZ, Wang Y, Li DX, Ren YF, Chen Z. The study of the morphology and phylogeny of the pathogen Phomasegeticola var. camelliaecaused a new tea disease [J]. Acta Phytopathol Sin, 2018, 48 (4): 556-559]
25. White TJ, Bruns TD, Lee SB, Taylor J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics [M]. San Diego: Academic, 1990
26. Staats M, Van Baarlen P, Van Kan JAL. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity [J].Mol Biol Evol, 2005, 22 (2): 333-346
27. 秦改娟, 王珊珊, 陈青君, 张昊琳, 张国庆. 一株假芝的分离鉴定与生物学特性[J]. 应用与环境生物学报, 2015, 21 (3): 464-469 [Qin GJ, Wang SS, Chen QJ, Zhang HL, Zhang GQ. Isolation, identification, and biological characteristics of a wild Amauroderma mushroom [J]. Chin J Appl Environ Biol, 2015, 21 (3): 464-469]
28. Rupp S PC, Rumsey S, Dowling M, Schnabel G, Weber RWS, Hahn M. Botrytis fragariae, a new species causing gray mold on strawberries, shows high frequencies of specific and efflux-based fungicide resistance [J]. Appl Environ Microbiol, 2017, 83 (9): e00269-17
29. 张艳杰, 许换平, 沈凤英,李兴红,李亚宁. 我国葡萄灰霉病菌形态型和致病力分化[J]. 农业生物技术学报, 2017, 25 (11): 1740-1755 [Zhang YJ, Xu HP, Shen FY, Li XL, Li YN. Phenotypes and virulence variability among grape gray mold isolates from grapes (Vitis vinifera) in China [J]. J Agric Biotechnol, 2017, 25 (11): 1740-1755]
30. 李喜玲, 高智谋, 李艳梅, 曹中革, 陈伟, 汪世军. 不同寄主来源的灰葡萄孢对番茄的致病力分化研究[J]. 菌物学报, 2008, 27 (3): 345-350 [Li XL, Gao ZM, Li YM, Cao ZG, Wang SJ. Differentiation of pathogenicity of Botrytis cinereastrains from different hosts to tomato [J]. Mycosystema, 2008, 27 (3): 345-350]
31. Zhou YJ, Zhang J., Wang XD, Yang L, Jiang DH, Li GQ, Hsiang T, Zhuang WY. Morphological and phylogenetic identification of Botrytis sinoviticola, a novel cryptic species causing gray mold disease of table grapes (Vitisv inifera) in China [J]. Mycologia, 2014, 106 (1): 43-56
32. 卢燕回, 谭海文, 袁高庆,袁维, 林纬, 黎起秦. 烟草灰霉病病原鉴定及其生物学特性[J]. 中国烟草学报, 2012, 18 (3): 61-66 [Lu YH, Tan HW, Yuan GQ, Yuan W, Lin W, Li QQ. Identification and evaluation in biological characteristics of tobacco grey mould pathogen [J]. Acta Tab Sin, 2012, 18 (3): 61-66]
33.

更新日期/Last Update: 2019-10-25