|本期目录/Table of Contents|

[1]马晓瑞,秦家亮,吴海珍,等.Fe3O4@SiO2-CHO共价固定脂肪酶条件的响应面优化及固定化酶催化生产生物柴油[J].应用与环境生物学报,2017,23(2):256-263.[doi:10.3724/SP.J.1145.2016.04037]
 MA Xiaorui,QIN Jialiang,WU Haizhen,et al.Preparation of a Fe3O4@SiO2-CHO carrier and immobilized lipase as a recyclable catalyst for biodiesel production[J].Chinese Journal of Applied & Environmental Biology,2017,23(2):256-263.[doi:10.3724/SP.J.1145.2016.04037]
点击复制

Fe3O4@SiO2-CHO共价固定脂肪酶条件的响应面优化及固定化酶催化生产生物柴油()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年第2期
页码:
256-263
栏目:
研究论文
出版日期:
2017-04-25

文章信息/Info

Title:
Preparation of a Fe3O4@SiO2-CHO carrier and immobilized lipase as a recyclable catalyst for biodiesel production
作者:
马晓瑞秦家亮吴海珍许毅曹瑜乔代蓉曹毅
1四川大学生命科学学院微生物与代谢工程四川省重点实验室 成都 610065 2四川大学生物材料工程研究中心 成都 610065
Author(s):
MA Xiaorui1 QIN Jialiang1 WU Haizhen1 XU Yi1 CAO Yu1 2 QIAO Dairong1 & CAO Yi**
1Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China 2Biomaterials Engineering Research Center of Sichuan University, Chengdu 610065, China
关键词:
磁性纳米复合载体Fe3O4@SiO2-CHO脂肪酶固定化响应面法生物柴油
Keywords:
magnetic nanoparticles Fe3O4@SiO2-CHO RSM biodiesel
分类号:
TK6 : TQ920.1
DOI:
10.3724/SP.J.1145.2016.04037
摘要:
生物柴油是一种可再生且环保的化石燃料的替代品,研究固定化酶生产生物柴油对解决石化燃料耗尽和环境保护具有重要意义. 将制备的纳米材料Fe3O4@SiO2-CHO与伯克霍尔德氏菌脂肪酶以共价交联的方式固定,通过响应面法(RSM)优化其固定化的条件,然后以固定化酶催化橄榄油生产生物柴油,并对影响生物柴油制备的因素进行优化,最后通过GC-MS检测转酯产物的成分. 结果表明:在加酶量30.22 mL、戊二醛浓度2%、固定化温度40 ℃、固定化时间4 h时得到最大的固定化脂肪酶酶活和固定化效率,分别为10 038 U/g和 96.9%. 然后以此最佳条件制得的固定化酶催化制备生物柴油,得到最优条件为加酶量1.5 g、醇油比 4 : 1、反应温度 30 ℃、反应时间 4 h. 最后用GC-MS分析所得产物,得到最大转酯效率为98.84%,且固定化酶重复转酯10次后,转酯效率仍可达90%. 本研究获得的Fe3O4@SiO2-CHO固定化酶不仅能在短时间内催化得到很高的生物柴油产量,且易回收、可重复使用、生产成本大大降低,是工业化生产生物柴油的一种高效环保的生物酶催化剂. (图5 表4 参38)
Abstract:
Biodiesel is a renewable fuel and an alternative to conventional fossil-based diesel. Enzymatic transesterification using lipase may be used to overcome problems associated with fossil fuel depletion, including environmental issues. In this study, lipase from Burkholderia stabilis was first immobilized onto Fe3O4@SiO2-CHO nanoparticles, then the immobilization condition was optimized by response surface methodology (RSM) to obtain the most efficient immobilized lipase. Moreover, the immobilized lipase as a recyclable catalyst for biodiesel production was evaluated via transesterification of olive oil in solvent-free system. Furthermore, the fatty acid methyl esters were analysed by GC-MS to detect the catalytic ability of immobilized lipase. Under the optimal immobilization conditions: catalyst amount 30.22 mL, concentration of glutaraldehyde 2.28%, reaction temperature 40.18 ℃, reaction time 4 h, the measured activity of immobilized lipase was 10 038 U/g and the immobilized efficiency was 96.9%. The optimum conditions of transesterification were as follows: catalyst amount 1.5 g, molar ratio of methanol to oil 4 : 1, water content 10%, reaction time 4 h, temperature 40 ℃. Under these conditions, the yield of biodiesel was 98.18% over 4 h based on the results of GC-MS, and about 90% was retained after 10 reuses. The use of Fe3O4@SiO2-CHO-immobilized lipase as a reusable catalyst for biodiesel production via transesterification greatly increases the efficiency of enzymatic biodiesel production on an industrial scale.

参考文献/References:

1 Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils [J]. J Biosci Bioeng, 2001, 92 (5): 405-416
2 Pipi ARF, Aquino Neto S, Andrade LH. Electrochemical degradation of diuron in chloride medium using DSA ? based anodes [J]. J Braz Chem Soc, 2013, 24 (8): 1259-1266
3 Vyas AP, Verma JL, Subrahmanyam N. A review on FAME production processes [J]. Fuel, 2010, 89 (1): 1-9
4 Lim S, Teong LK. Recent trends, opportunities and challenges of biodiesel in Malaysia: an overview [J]. Renew Sustain Energy Rev, 2010, 14 (3): 938-954
5 Hama S, Kondo A. Enzymatic biodiesel production: an overview of potential feedstocks and process development [J]. Bioresour Technol, 2013, 135: 386-395
6 Bajaj A, Lohan P, Jha PN, Mehrotra R. Biodiesel production through lipase catalyzed transesterification: an overview [J]. J Mol Catal B Enzym, 2010, 62 (1): 9-14
7 Kuo C-H, Liu Y-C, Chang C-MJ, Chen J-H, Chang C, Shieh C-J. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles [J]. Carbohydr Polym, 2012, 87 (4): 2538-2545
8 Iso M, Chen B, Eguchi M, Kudo T, Shrestha S. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase [J]. J Mol Catal B Enzym, 2001, 16 (1): 53-58
9 李菲, 郝喜海, 王振中, 李慧敏. 纳米粉体的表面改性研究进展[J]. 广东化工. 2010, 37 (5): 13-14 [Li F, Hao XH, Wang ZZ, Li HM. Progress on surface modifiication, of nano-power [J]. Guangdong Chem Ind, 2010, 37 (5): 13-14]
10 Turan E, ?ahin F. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A [J]. Sensors Actuators B Chem, 2016, 227: 668-676
11 Ngomsik AF, Bee A, Siaugue JM, Cabuil V, Cote G. Nickel adsorption by magnetic alginate microcapsules containing an extractant [J]. Water Res, 2006, 40 (9): 1848-1856
12 易笑生, 胡铁, 冯超, 谷政伟, 黎继烈, 李昌珠. Fe3O4-SiO2载体制备和脂肪酶固定化条件优化[J]. 食品工业科技, 2011, 36 (1): 235-243 [Yi XS, Hu T, Feng C, Gu ZW, Li JL, Li CZ. Preparation of Fe3O4-SiO2 carrier and optimization of lipase immobilization conditions [J]. Food Sci Technol, 2011, 36 (1): 235-243]
13 娄敏毅, 王德平, 黄文旵, 刘冰, 贾秋凌. 单分散核壳结构SiO2磁性微球的制备及性能[J]. 硅酸盐学报, 2005, 34 (3): 276-283 [Lou MY, Wang DP, Huang WQ, Liu B, Jia QL. Preparation and properties of monodispersed core-shell structure SiO2 magnetic microspheres [J]. J Chin Ceramic Soc, 2005, 34 (3): 276-283]
14 Xavier Malcata F, Reyes HR, Garcia HS, Hill CG, Amundson CH. Immobilized lipase reactors for modification of fats and oils—A review [J]. J Am Oil Chem Soc, 1990, 67 (12): 890-910
15 Ranjbakhsh E, Bordbar AK, Abbasi M, Khosropour AR, Shams E. Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles [J]. Chem Eng J, 2012, 179: 272-276
16 Narwal SK, Gupta R. Biodiesel production by transesterification using immobilized lipase [J]. Biotechnol Lett, 2013, 35 (4): 479-490
17 梁欣欣, 魏东. 新型交联剂三羟甲基磷固定化脂肪酶的研究[J]. 现代食品科技, 2012, 28 (1): 47-51 [Liang XX, Wei D. Study on immobilized lipase in new crosslinker trimethylol phosphorus [J]. Mod Food Sci Technol, 2012, 28 (1): 47-51]
18 Liu C-H, Huang C-C, Wang Y-W, Lee D-J, Chang J-S. Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles [J]. Appl Energy, 2012, 100: 41-46
19 Vorderwülbecke T, Kieslich K, Erdmann H. Comparison of lipases by different assays [J]. Enzyme Microb Technol, 1992, 14 (8): 631-639
20 江蕙芳, 王雅琴, 刘春国. 三种脂肪酶活力测定方法的比较及改进[J]. 化学与生物工程, 2007, 24 (8): 72-75 [Jiang HF, Wang YQ, Liu JG. Comparison and improvement of three methods for determination of lipase activity [J]. Chin J Chem Bioeng, 2007, 24 (8): 72-75]
21 陈志军, 李向红, 刘永乐, 肖军霞. 大豆分离蛋白溶解性和乳化性影响因素研究[J]. 粮油食品科技, 2011, 19 (1): 32-35 [Chen ZJ, Li XH, Liu YL, Xiao JX. Study on influencing factors of solubility and emulsification of soybean protein isolate [J]. Cereals Oils, 2011, 19 (1): 32-35]
22 Yin X, Ma H, You Q, Wang Z, Chang J. Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil [J]. Appl Energy, 2012, 91 (1): 320-325
23 Mendow G, Veizaga NS, Sánchez BS, Querini CA. Biodiesel production by two-stage transesterification with ethanol by washing with neutral water and water saturated with carbon dioxide [J]. Bioresour Technol, 2012, 118: 598-602
24 Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil [J]. Bioresour Technol, 2005, 96 (7): 769-777
25 Salis A, Pinna M, Monduzzi M, Solinas V. Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis [J]. J Mol Catal B Enzym, 2008, 54 (1-2): 19-26
26 Shimada Y, Watanabe Y, Samukawa T. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase [J]. J Am Oil Chem Soc, 1999, 76 (7): 789-793
27 Freedman B, Pryde EH, Mounts TL. Variables affecting the yields of fatty esters from transesterified vegetable oils [J]. J Am Oil Chem Soc, 1984, 61 (10): 1638-1643
28 Dossat V, Combes D, Marty A. Lipase-catalysed transesterification of high oleic sunflower oil [J]. Enzyme Microb Technol, 2002, 30 (1): 90-94
29 Wyatt VT, Haas MJ. Production of fatty acid methyl esters via the in situ transesterification of soybean oil in carbon dioxide-expanded methanol [J]. J Am Oil Chem Soc, 2009, 86 (10): 1009-1016
30 Tran D-T, Chen C-L, Chang J-S. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production [J]. J Biotechnol, 2012, 158 (3): 112-119
31 Xie W, Wang J. Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst [J]. Energy Fuels, 2014, 28 (4): 2624-2631
32 Ognjanovic N, Bezbradica D, Knezevic-Jugovic Z. Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: process optimization and the immobilized system stability [J]. Bioresour Technol, 2009, 100 (21): 5146-5154
33 Kumar V, Jahan F, Raghuwanshi S, Mahajan RV, Saxena RK. Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4-chitosan beads and its potential in phenolic acids ester synthesis [J]. Biotechnol Bioprocess Eng, 2013, 18 (4): 787-795
34 Garlapati V, Kant R, Kumari A, Mahapatra P, Das P, Banerjee R. Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production [J]. Sustain Chem Process, 2013, 1 (1): 11
35 Baron AM, Barouh N, Barea B, Villeneuve P, Mitchell DA, Krieger N. Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support [J]. Fuel, 2014, 117: 458-462
36 Horchani H, Cha?bouni M, Gargouri Y, Sayari A. Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology [J]. Carbohydr Polym, 2010, 79 (2): 466-474
37 Soumanou MM, Bornscheuer UT. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil [J]. Enzyme Microb Technol, 2003, 33 (1): 97-103
38 Wu CH, Deng J, Ma QYn, Shi YCng, Xu Jjing. Study on production of biodiesel from waste oil by food and beverage [J]. Chem Bioeng, 2008, 24: 1833-1843

更新日期/Last Update: 2017-04-25