|本期目录/Table of Contents|

[1]刘艳,裴小琼,崔璨,等.[综 述] 生物催化不对称还原制备(R)-1-[3,5-二(三氟甲基)苯基]乙醇研究进展[J].应用与环境生物学报,2020,26(04):820-826.
 LIU Yan?,PEI Xiaoqiong,CUI Can,et al.Advances in the production of (R)-1-[3,5-bis(trifluoromethyl)phenyl] ethanol via an asymmetric and biocatalytic reduction reaction[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):820-826.

[综 述] 生物催化不对称还原制备(R)-1-[3,5-二(三氟甲基)苯基]乙醇研究进展()




Advances in the production of (R)-1-[3,5-bis(trifluoromethyl)phenyl] ethanol via an asymmetric and biocatalytic reduction reaction
1中国科学院成都生物研究所,中国科学院环境与应用微生物重点实验室,环境微生物四川省重点实验室 成都 610041 2中国科学院大学 北京 100049
LIU Yan1? PEI Xiaoqiong1 CUI Can1 2 DING Zhaoyun1 2 & WU Zhongliu1
1 Key Laboratory of Environmental and Applied Microbiology & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
carbonyl reductase ketone reductase?Aprepitant anti-Prelog rule chiral alcohol directed evolution
(R)-1-[3,5-二(三氟甲基)苯基]乙醇是合成药物阿瑞匹坦的关键中间体. 以羰基还原酶生物催化前手性酮3,5-二(三氟甲基)苯乙酮的方法制备该中间体具有立体选择性优异、反应条件温和、对环境友好等优点,近年来受到广泛关注,目前已报道的高立体选择性酶源(产物ee > 99%)有10余种. 其中原始菌株生物催化体系能够转化底物的浓度普遍低于200 mmol/L,而利用重组Escherichia coli全细胞或者粗酶液则可催化1 mol/L以上的底物. 通过添加离子液体、深共熔溶剂等辅溶剂,羰基还原酶与葡萄糖脱氢酶融合表达以及酶固定化技术等方法优化反应体系可以有效提高底物转化效率. 有些羰基还原酶,如LXCAR、KR01、ChKRED20等,能够催化异丙醇脱氢实现辅酶自循环,其催化体系具有明显优势. 未来利用蛋白质工程技术对野生型的潜力酶进行人工进化,可以进一步提高利于工业应用的酶学性能,同时稳定的生产工艺、规模放大、后处理等方面也需要深入开展研究. (图2 表3 参52)
The (R)-1-[3,5-bis(trifluoromethyl)phenyl] ethanol [(R)-1b] is a key intermediate in the synthesis of the chiral drug Aprepitant. The asymmetric reduction of the prochiral 1-[3,5-bis(trifluoromethyl)phenyl] ethanone (1a) by carbonyl reductases (ketoreductases) can be an efficient and powerful method for producing highly optically-active (R)-1b, which has become popular in recent years due to its excellent stereoselectivity, mild reaction conditions, and environmental friendliness. At present, more than 10 strains and ketoreductases with excellent (R)-stereoselectivity for substrate 1a (ee > 99%) have been screened from environmental soils or gene databases. When whole cells of isolated strains were applied to reduce 1a, the concentrations of the transformed substrates were generally lower than 200 mmol/L. However, the whole cells of recombinant Escherichia coli or cell-free enzymes could catalyze up to 1 mol/L substrate concentrations. Several methods have been used to improve the catalytic efficiency, such as adding cosolvents in terms of ionic liquids and deep eutectic solvent as well as co-expressing with glucose dehydrogenase and using immobilization technologies. Ketoreductases, such as LXCAR, KR01 and ChKRED20, that can regenerate coenzymes NAD(P)H with isopropanol, are clearly beneficial in (R)-1b production. Furthermore, molecule evolution of these potential enzymes using protein engineering technology could improve their performances for industrial applications. Stable processing, large-scale productions, and post-treatment still require further studies.


1 Aapro M, Carides A, Rapoport BL, Schmoll HJ, Zhang L, Warr D. Aprepitant and fosaprepitant: a 10-year review of efficacy and safety [J]. Oncologist, 2015, 20 (4): 450-458
2 Navari RM, Aapro M. Antiemetic prophylaxis for chemotherapy-induced nausea and vomiting [J]. N Engl J Med, 2016, 374 (14): 1356-1367
3 Hansen KB, Chilenski JR, Desmond R, Devine PN, Grabowski EJJ, Heid R, Kubryk M, Mathre DJ, Varsolona R. Scalable, efficient process for the synthesis of (R)-3,5-bistrifluoromethylphenyl ethanol via catalytic asymmetric transfer hydrogenation and isolation as a DABCO inclusion complex [J]. Tetrahedron: Asymmetry, 2003, 14 (22): 3581-3587
4 Brands KMJ, Payack JF, Rosen JD, Nelson TD, Candelario A, Huffman MA, Zhao MM, Li J, Craig B, Song ZJ, Tschaen DM, Hansen K, Devine PN, Pye PJ, Rossen K, Dormer PG, Reamer RA, Welch CJ, Mathre DJ, Tsou NN, McNamara JM, Reider PJ. Efficient synthesis of NK1 receptor antagonist aprepitant using a crystallization-induced diastereoselective transformation [J]. J Am Chem Soc, 2003, 125: 2129-2135
5 Kolla N, Elati CR, Arunagiri M, Gangula S, Vankawala PJ, Anjaneyulu Y, Bhattacharya A, Venkatraman S, Mathad VT. An alternative approach to achieve enantiopure (3S)-4-Benzyl-3-(4-fluorophenyl) morpholin-2-one: a key intermediate of aprepitant, an NK1 receptor antagonist [J]. Org Process Res Dev, 2007, 11 (3): 455-457
6 Xu L, Huang ZH, Sandoval CA, Gu LQ, Huang ZS. Asymmetric hydrogenation of 3,5-bistrifluoromethyl acetophenone in pilot scale with industrially viable Ru/diphosphine-benzimidazole complexes [J]. Org Process Res Dev, 2014, 18: 1137-1141
7 Vankawala PJ, Kolla N, Elati CR, Sreenivasulu M, Kumar K, Anjaneyulu Y, Venkatraman S, Bhattacharya A, Mathad V. Efficient synthesis of (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol, a key intermediate for aprepitant, an NK-1 receptor antagonist [J]. Synthetic Commun, 2007, 37 (19-21): 3439-3446
8 Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis [J]. Nature, 2012, 485 (7397): 185-194
9 Hollmann F, Arends IWCE, Holtmann D. Enzymatic reductions for the chemist [J]. Green Chem, 2011, 13 (9): 2285-2314
10 Huisman GW, Liang J, Krebber A. Practical chiral alcohol manufacture using ketoreductases [J]. Curr Opin Chem Biol, 2010, 14 (2): 122-129
11 Prelog V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections [J]. Pure Appl Chem, 1964, 9: 119-130
12 Matsuda T, Yamanaka R, Nakamura K. Recent progress in biocatalysis for asymmetric oxidation and reduction [J]. Tetrahedron: Asymmetry, 2009, 20 (5): 513-557
13 Patel RN. Synthesis of chiral pharmaceutical intermediates by biocatalysis [J]. Coordin Chem Rev, 2008, 252 (5-7): 659-701
14 Homann MJ, Vail RB, Previte E, Tamarez M, Morgan B, Dodds DR, Zaks A. Rapid identification of enantioselective ketone reductions using targeted microbial libraries [J]. Tetrahedron, 2004, 60 (3): 789-797
15 Goldberg K, Schroer K, Lutz S, Liese A. Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part I: processes with isolated enzymes [J]. Appl Microbiol Biotechnol, 2007, 76 (2): 237-248
16 Pollard D, Truppo M, Pollard J, Chen CY, Moore J. Effective synthesis of (S)-3,5-bistrifluoromethylphenyl ethanol by asymmetric enzymatic reduction [J]. Tetrahedron: Asymmetry, 2006, 17: 554-559
17 Li AP, Ye LD, Guo F, Yang XH, Yu HW. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of a newly isolated strain Empedobacter brevis ZJUY-1401 [J]. J Mol Catal B: Enzym, 2015, 117: 31-37
18 Liu Y, Tang TX, Pei XQ, Zhang C, Wu ZL. Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3,5-bis(trifluoromethyl)acetophenone [J]. J Mol Catal B: Enzym, 2014, 102: 1-8
19 Gai P, Tang CG, Liu JY, Liu Y, Zhang C, Wu ZL. Asymmetric anti-Prelog reduction of 3,5-bis(trifluoromethyl)-acetophenone by Microbacterium oxydans C3 [J]. Chin J Appl Environ Biol, 2013, 19: 37-42
20 Kurbanoglu EB, Zilbeyaz K, Taskin M, Kurbanoglu NI. Total production of (R)-3,5-bistrifluoromethylphenyl ethanol by asymmetric reduction of 3,5-bis(trifluoromethyl)-acetophenone in the submerged culture of Penicillium expansum isolate [J]. Tetrahedron: Asymmetry, 2009, 20: 2759-2763
21 Gelo-Pujic M, Le Guyader F, Schlama T. Microbial and homogenous asymmetric catalysis in the reduction of 1-[3,5-bis(trifluoromethyl)phenyl]ethanone [J]. Tetrahedron: Asymmetry, 2006, 17: 2000-2005
22 Wang P, Cai JB, Ouyang Q, He JY, Su HZ. Asymmetric biocatalytic reduction of 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol using whole cells of newly isolated Leifsonia xyli HS0904 [J]. Appl Microbiol Biotechnol, 2011, 90 (6): 1897-1904
23 Li J, Wang P, He JY, Huang J, Tang J. Efficient biocatalytic synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol [J]. Appl Microbiol Biotechnol, 2013, 97 (15): 6685-6692
24 Wang NQ, Huang J, Luo HD, Wang P, Li J. Purification and characterization of a new carbonyl reductase from Leifsonia xyli HS0904 involved in stereoselective reduction of 3,5-bis(trifluoromethyl)acetophenone [J]. J Mol Catal B: Enzym, 2013, 92: 1-6
25 Wang NQ, Sun J, Huang J, Wang P. Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency [J]. Appl Microbiol Biotechnol, 2014, 98: 8591-8601
26 Li AP, Ye LD, Wu HP, Yang XH, Yu HW. Characterization of an excellent anti-Prelog short-chaindehydrogenase/reductase EbSDR8 from Empedobacter brevis ZJUY-1401 [J]. J Mol Catal B: Enzym, 2015, 122: 179-187
27 吴中柳, 许光鹏, 刘艳, 裴小琼. 一种制备(S)-N-叔丁氧羰基-3-羟基哌啶的方法: 中国, CN105420307A [P]. 2015 [Wu ZL, Xu GP, Liu Y, Pei XQ. A method for preparing (S)-N-Boc-3-hydroxypiperidine: China, CN105420307A [P]. 2015]
28 Xu GP, Wang HB, Wu ZL. Efficient bioreductive production of (S)-N-Boc-3-hydroxypiperidine using ketoreductase ChKRED03 [J]. Process Biochem, 2016, 51: 881-885
29 Ren ZQ, Liu Y, Pei XQ, Wu ZL. Stereoselective bioreduction of ethyl 3-oxo-3-(2-thienyl) propanoate using the short-chain dehydrogenase/reductase ChKRED12 [J]. J Microbiol Biotechnol, 2019, 29 (11): 1769-1776
30 吴中柳, 刘艳, 裴小琼. 一种新型羰基还原酶、其基因及应用: 中国, CN103695443A [P]. 2014 [Wu ZL, Liu Y, Pei XQ. A new carbonyl reductase, its gene and application: China, CN103695443A [P]. 2014]
31 吴中柳, 任志强, 刘艳. 羰基还原酶生物催化生产噻吩基手性醇类化合物: 中国, CN104830924A [P]. 2015 [Wu ZL, Ren ZQ, Liu Y. Synthesis of chiral alcohols with thiophene group catalyzed by carbonyl reductases: China, CN104830924A [P]. 2015]
32 Ren ZQ, Liu Y, Pei XQ, Wang HB, Wu ZL. Bioreductive production of enantiopure (S)-duloxetine intermediatescatalyzed with ketoreductase ChKRED15 [J]. J Mol Catal B: Enzym, 2015, 113: 76-81
33 Weckbecker A, Hummel W. Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir [J]. Biocatal Biotransfor, 2009, 24: 380-389
34 Chen KL, Li KF, Deng J, Zhang BQ, Lin JP, Wei DZ. Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis (R)-[3,5 bis(trifluoromethyl)phenyl] ethanol [J]. Microb Cell Fact, 2016, 15: 191-201
35 Yu SZ, Li HX, Lu Y, Zheng GJ. A catalyst from Burkholderia cenocepacia for efficient anti-Prelog’s bioreduction of 3,5-bis(Trifluoromethyl) acetophenone [J]. Appl Biochem Biotechnol, 2018, 184: 1319-1331
36 De Carvalho CCCR, Da Fonseca MMR. Bacterial whole cell biotransformations: in vivo reactions under in vitro conditions [J]. Dyn Biochem Process Biotechnol Mol Biol, 2007, 1: 32-39
37 Ouyang Q, Wang P, Huang J, Cai JB, He JY. Efficient enantioselective synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by Leifsonia xyli CCTCC M 2010241 using isopropanol as co-substrate [J]. J Microbiol Biotechnol, 2013, 23 (3): 343-350
38 Tang JW, Wei TY, Ni GW, Guo X, Wu YJ, Zhang FL, Chen SX. Development of an efficient and cost-effective enzymatic process for production of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol using carbonyl reductase derived from Leifsonia sp. S749 [J]. Appl Biochem Biotechnol, 2019, 188 (1): 87-100
39 Calvin SJ, Mangan D, Miskelly I, Moody TS, Stevenson PJ. Overcoming equilibrium issues with carbonyl reductase enzymes [J]. Org Process Res Dev, 2012, 16: 82-86
40 Wang NQ, Li J, Sun J, Huang J, Wang P. Bioreduction of 3,5-bis(trifluoromethyl)acetophenone using ionic liquid as a co-solvent catalyzed by recombinant Escherichia coli cells [J]. Biochem Eng J, 2015, 101: 119-125
41 De Carvalho CCCR. Enzymatic and whole cell catalysis: finding new strategies for old processes [J]. Biotechnol Adv, 2011, 29 (1): 75-83
42 Zhang YHP. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities [J]. Biotechnol Bioeng, 2010, 105: 663-677
43 Zhao FJ, Pei XQ, Ren ZQ, Wu ZL. Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20 [J]. Appl Microbiol Biotechnol, 2016, 100 (8): 3567-3575
44 Zhao FJ, Liu Y, Pei XQ, Guo C, Wu ZL. Single mutations of ketoreductase ChKRED20 enhance the bioreductive production of (1S)-2-chloro-1-(3,4-difluorophenyl) ethanol [J]. Appl Microbiol Biotechnol, 2017, 101 (5): 1945-1952
45 Tang TX, Liu Y, Wu ZL. Characterization of a robust anti-Prelog short-chain dehydrogenase/reductase ChKRED20 from Chryseobacterium sp. CA49 [J]. J Mol Catal B: Enzym, 2014, 105: 82-88
46 Zhao FJ, Jin Y, Liu ZC, Guo C, Li TB, Li ZY, Wang GG, Wu ZL. Crystal structure and iterative saturation mutagenesis of ChKRED20 for expanded catalytic scope [J]. Appl Microbiol Biotechnol, 2017, 101 (23-24): 8395-8404
47 Li TB, Zhao FJ, Liu ZC, Jin Y, Liu Y, Pei XQ, Zhang ZG, Wang GG, Wu ZL. Structure-guided engineering of ChKRED20 from Chryseobacterium sp. CA49 for asymmetric reduction of aryl ketoesters [J]. Enzym Microb Technol, 2019, 125: 29-36
48 Li HM, Moncecchi J, Truppo MD. Development of an immobilized ketoreductase for enzymatic (R) 1-(3,5-bis(tri?uoromethyl)phenyl)ethanol production [J]. Org Process Res Dev, 2015, 19: 695-700
49 Li J, Wang P, He YS, Zhu ZR, Huang J. Toward designing a novel oligopeptide-based deep eutectic solvent: applied in biocatalytic reduction [J]. ACS Sustainable Chem Eng, 2019, 7: 1318-1326
50 Li J, Fan ML, Zhang RJ, Tian ZY, Zeng J, Song YN, Du WT. New ionic liquid increase the catalytic efficiency of recombinant Escherichia coli cells-mediated asymmetric reduction [J]. J Chem Technol Biotechnol, 2019, 94: 159-166
51 刘艳. 金黄杆菌CA49的筛选及关键羰基还原酶的应用[D]. 北京: 中国科学院大学, 2016 [Liu Y. Screening of Chryseobacterium sp. CA49 and application of its key ketoreductase ChKRED20 [D]. Beijing: University of Chinese Academy of Sciences, 2016]
52 Li AP, Ye LD, Yang XH, Yang CC, Gu JL, Yu HW. Structure-guided stereoselectivity inversion of a short-chain dehydrogenase/reductase towards halogenated acetophenones [J]. Chem Commun, 2016, 52: 6284-6287


 XING Ye,LIU Yan,ZHANG Chao,et al.Asymmetric Ketone Reduction Using Targeted Yeast Collections Isolated from Chinese Liquor Pits[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):1014.[doi:10.3724/SP.J.1145.2013.01014]
[2]刘艳** 杨玉洁,李孜一,李同彪,等.定点突变提高羰基还原酶ChKRED03的热稳定性[J].应用与环境生物学报,2021,27(03):1.
 Received: 00-xx-xx Accepted: 00-xx-xx.CLC Q814.9[J].Chinese Journal of Applied & Environmental Biology,2021,27(04):1.

更新日期/Last Update: 2020-08-25