|本期目录/Table of Contents|

[1]孙建瑞,赵君峰,符丹丹,等.不同光质对衣藻(Chlamydomonas sp. 212)生长及油脂积累的影响[J].应用与环境生物学报,2020,26(04):1017-1023.
 SUN Jianrui,ZHAO Junfeng,FU Dandan & WANG Dahong.Effects of different lights on the growth and lipid accumulation of Chlamydomonas sp. 212[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):1017-1023.
点击复制

不同光质对衣藻(Chlamydomonas sp. 212)生长及油脂积累的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年04期
页码:
1017-1023
栏目:
研究论文
出版日期:
2020-08-25

文章信息/Info

Title:
Effects of different lights on the growth and lipid accumulation of Chlamydomonas sp. 212
作者:
孙建瑞赵君峰符丹丹王大红
河南科技大学食品与生物工程学院,河南省食品微生物工程技术研究中心 洛阳 471023
Author(s):
SUN Jianrui ZHAO Junfeng FU Dandan & WANG Dahong?
College of Food and Bioengineering, Henan Engineering Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
关键词:
微藻油脂光质生长特性脂肪酸
Keywords:
microalgae lipid light quality growth characteristics fatty acid
摘要:
研究白光、红光、蓝光、红蓝光(1:3)、红蓝光(1:2)、红蓝光(1:1)、红蓝光(2:1)和红蓝光(3:1)8种光质在100 μmol m-2 s-1的光照强度下对Chlamydomonas sp. 212生长特性及油脂积累的影响. 在不同光质条件下进行Chlamydomonas sp. 212的培养,对其生物量、光合色素含量、碳水化合物含量、蛋白质含量、油脂积累量及脂肪酸组成等指标进行测量与综合分析. 结果发现,蓝光下Chlamydomonas sp. 212的生物量达到最大(0.335 1 g/L),红光下其生物量最小. 蓝光下Chlamydomonas sp. 212的叶绿素a、叶绿素b和类胡萝卜素的含量均为最高,分别为12.26、6.34和5.94 mg/L;红光下叶绿素a、叶绿素b和类胡萝卜素的含量均较低. Chlamydomonas sp. 212在红光下碳水化合物的含量最高(27.54%),蛋白质的含量最低(23.68%);蓝光下碳水化合物的含量最低(19.12%),蛋白质的含量为31.46%;红蓝光下碳水化合物和蛋白质的含量低于白光. Chlamydomonas sp. 212在蓝光下油脂含量为29.86%,产量为100.06 mg/L;红光下油脂含量为27.52%,油脂产量最低;而红蓝光下油脂的积累量明显升高,红蓝光(1:2)下油脂含量最高35.25%,红蓝光(1:3)下油脂产量最高(109.23 mg/L). 不同光质对Chlamydomonas sp. 212脂肪酸组成的影响不显著,C16和C18脂肪酸的相对含量达到93%以上,饱和脂肪酸约占47%,不饱和脂肪酸约占53%. 本研究表明蓝光有利于Chlamydomonas sp. 212的生长,红光不利于其生长;蓝光有利于油脂的积累,红蓝光下油脂的积累显著升高,且蓝光占比越高,越有利于油脂的积累,红蓝光(1:3)下油脂的积累量最高;结果可为不同光质在微藻生产生物柴油中的应用提供理论依据. (图6 表1 参32)
Abstract:
The effects of white, red, and blue light, and the combination of red and blue light (1:3, 1:2, 1:1, 2:1, or 3:1; light intensity = 100 μmol m-2 s-1 for all groups) on the growth characteristics and lipid accumulation of Chlamydomonas sp. 212 were studied. Chlamydomonas sp. 212 was cultured under the different light treatments, and the biomass, photosynthetic pigment content, carbohydrate content, protein content, lipid accumulation, and fatty acid composition were measured and comprehensively analyzed. The biomass of Chlamydomonas sp. 212 reached a maximum of 0.335 1 g/L under blue light and was lowest under red light. The contents of chlorophyll a, chlorophyll b, and carotenoids were highest under blue light (12.26 mg/L, 6.34 mg/L, and 5.94 mg/L, respectively) and lowest under red light. Chlamydomonas sp. 212 had the highest carbohydrate content (27.54%) and lowest protein content (23.68%) under red light, while it had the lowest carbohydrate content (19.12%) and highest protein content (31.46%) under blue light. The carbohydrate and protein contents in the red and blue light treatments were lower than in the white light treatment. The lipid content of Chlamydomonas sp. 212 was 29.86%, and the production was 100.06 mg/L under blue light; the lipid content was 27.52%, and the production was lower under red light. Interestingly, the lipid accumulation was significantly increased under red and blue light. The lipid content was highest (35.25%) under red and blue light (1:2), and the lipid production was highest (109.23 mg/L) under red and blue light (1:3). There were no significant effects of the different light treatments on the fatty acid composition. The relative contents of C16 and C18 fatty acids were more than 93%, while the relative contents of saturated fatty acids were ~47% and the relative contents of unsaturated fatty acids were ~53%. Blue light was conducive to Chlamydomonas sp. 212 growth, but red light was not. Blue light was also beneficial to lipid accumulation, and the lipid accumulation was significantly increased under red and blue light. Moreover, higher proportions of blue light were more conducive to the lipid accumulation, and lipid production was highest under red and blue light (1:3).

参考文献/References:

1 Panwar NL, Kaushik SC, Kothari S. Role of renewable energy sources in environmental protection: a review [J]. Renew Sust Energ Rev, 2011, 15 (3): 1513-1524
2 Sun XM, Ren LJ, Zhao QY, Zhanga LH, Huang H. Application of chemicals for enhancing lipid production in microalgae-a short review [J]. Bioresource Technol, 2019, 293: 122135
3 He YJ, Huang ZC, Zhong C, Guo Z, Chen BL. Pressurized liquid extraction with ethanol as a green and efficient technology to lipid extraction of Isochrysis biomass [J]. Bioresource Technol, 2019, 293: 122049
4 翟映雪, 梁成伟, 张伟, 于建生. 微藻油脂的研究进展[J]. 食品工业科技, 2014, 35 (17): 370-375 [Zhai YX, Liang CW, Zhang W, Yu JS. Advances on microalgae as sustainable energy source for biodiesel production [J]. Sci Technol Food Ind, 2014, 35 (17): 370-375]
5 Cheng J, Qiu Y, Zhang Z, Guo H, Yang WJ, Zhou JH. Mixing food waste and microalgae to simultaneously improve biodiesel production through transesterification and bio-crude production through hydrothermal liquefaction [J]. J Biobased Mater Biol, 2020, 14 (1): 40-49
6 Sawaengsak W, Silalertruksa T, Bangviwat A, Gheewala, SH. Life cycle cost of biodiesel production from microalgae in Thailand [J]. Energy Sustain Dev, 2014, 18: 67-74
7 Pandey A, Srivastava S, Kumar S. Isolation, screening and comprehensive characterization of candidate microalgae for biofuel feedstock production and dairy effluent treatment: a sustainable approach [J]. Bioresource Technol, 2019, 293: 121998
8 张婷. 不同培养条件对几株丝状藻生长及油脂积累的研究[D]. 乌鲁木齐: 新疆大学, 2018 [Zhang T. The study on growth and lipid accumulation of several strains of filamentous algae under different culture conditions [D]. Wulumuqi: Xinjiang University, 2018]
9 Sun X, Cao Y, Xu H, Liu Y, Sun JR, Qiao DR, Cao Y. Effect of nitrogen-starvation, light intensity and iron on triacylglyceri- de/carbohydrate production and fatty acid profile of Neochloris oleoabundans, HK-129 by a two-stage process [J]. Bioresource Technol, 2014, 155 (2): 204-212
10 Solovchenko AE, Khozin-goldberg I, Didi-cohen S, Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise [J]. J Appl Phycol, 2008, 20 (3): 245-251
11 Abomohra A, Shang H, El-Sheekh M, Eladel H, Ebaid R, Wang S, Wang Q. Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production [J]. Bioresource Technol, 2019, 288: 121514
12 陈爱玲. 氮、磷、硫及光对类波氏真眼点藻油脂积累的调控和转录组学分析[D]. 广州: 暨南大学, 2018 [Chen AL. The regulation of lipid accumulation and transcriptome analysis of Eustigmato cf. polyphem under varying nitrogen, phosphorus, sulfur supply and light source [D]. Guangzhou: Jinan University, 2018]
13 唐青青, 方治国, 嵇雯雯, 夏会龙. 光质对蛋白核小球藻(Chlorella pyrenoidosa)生长特征及生化组成的影响研究[J]. 环境科学, 2014, 35 (11): 4212-4217 [Tang QQ, Fang ZG, Ji WW, Xia HL. Effects of light quality on the growth characteristics and biochemical component of Chlorella pyrenoidosa [J]. Environ Sci, 2014, 35 (11): 4212-4217]
14 Goncalves VD, Fagundes-Klen MR, Trigueros DEG, Schuelter AR, Kroumov AD, Modenes AN. Combination of light emitting diodes (LEDs) for photostimulation of carotenoids and chlorophylls synthesis in Tetradesmus sp. [J]. Algal Res, 2019, 43: 101649
15 毛瑞鑫, 郭双生. LED红蓝光对钝顶螺旋藻生长及光合放氧的影响[J]. 航天医学与医学工程, 2017, 30 (3): 225-229 [Mao RX, Guo SS. Effects of red and blue led light on growth and oxygen-releasing capacity of Spirulina platensis [J]. Space Med Eng, 2017, 30 (3): 225-229]
16 Li DJ, Yuan YZ, Cheng DJ, Zhao QY. Effect of light quality on growth rate, carbohydrate accumulation, fatty acid profile and lutein biosynthesis of Chlorella sp. AE10 [J]. Bioresource Technol, 2019, 291: 121783
17 Hwang JH, Maier N. Effects of LED-controlled spatially-averaged light intensity and wavelength on Neochloris oleoabundans growth and lipid composition [J]. Algal Res, 2019, 41: 101573
18 孔苗. 利用模拟产酸发酵液与酿醋废水培养小球藻Chlorella sp.的研究[D]. 镇江: 江苏大学, 2016 [Kong M. Study on the cultivation of Chlorella sp. in simulating hydrolysis acidification effluent and vinegar fermentation wastewater [D]. Zhenjiang: Jiangsu University, 2016]
19 吴琼芳. 不同氮素浓度下产油普通小球藻的光合生理及生化特征研究[D]. 广州: 暨南大学, 2016 [Wu QF. Research on photosynthetic physiology and biochemical characteristics of oleaginous Chlorella vulgaris in different nitrogen concentrations [D]. Guangzhou: Jinan University, 2016]
20 孙显. 产油微藻两步法生产TAG和碳水化合物的代谢调控及其与污水处理耦合的研究[D]. 成都: 四川大学, 2014 [Sun X. Study on the metabolic regulation of TAG/carbohydrate producton of oleaginous microalgae by a two-stage strategy and its coupling with wasterwater treatment [D]. Chengdu: Sichuan University, 2014]
21 孙建瑞, 宋涛, 孙显, 宋济君, 王川, 乔代蓉. 富油小球藻Chlorella protothecoides胞内多糖和油脂提取工艺优化[J]. 应用与环境生物学报, 2014, 20 (4): 615-620 [Sun JR, Song T, Sun X, Song JJ, Wang C, Qiao DR. Extraction optimization of intracellular polysaccharide and lipid from oleaginous Chlorella protothecoides [J]. Chin J Appl Environ Biol, 2014, 20 (4): 615-620]
22 Bigelow NW, Hardin WR, Barker JP, Ryken SA, MacRae AC, Cattolico RA. A comprehensive GC–MS sub-microscale assay for fatty acids and its applications [J]. J Am Oil Chem Soc, 2011, 88 (9): 1329-1338
23 Kuwano K, Abe N, Nishi Y. Growth and cell cycle of Ulva compressa (Ulvophyceae) under LED illumination [J]. J Phycol, 2014, 50 (4): 744-752
24 Tsekos I, Niell F X, Aguilera J, Figueroa FL, Delivopoulos SG. Ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta, (Rhodophyta) grown in red, blue and green light [J]. Phycol Res, 2002, 50 (4): 251-264
25 Wang CY, Fu CC, Liu YC. Effects of using light-emitting diodes on the cultivation of Spirulina platensis [J]. Biochem Eng J, 2007, 37 (1): 21-25
26 Das P, Lei W, Aziz SS, Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light [J]. Bioresource Technol, 2011, 102 (4): 3883-3887
27 尹继龙, 唐小红, 郑洪立, 尹丰伟, 高振, 黄和. 不同光质对小球藻光自养培养积累油脂的影响[J]. 生物加工过程, 2014, 12 (5): 62-68 [Yin JL, Tang XH, Zheng HL, Yin FW, Gao Z, Huang H. Effect of light wavelengths on lipid accumulation of Chlorella vulgaris in photoautotrophic culture [J]. Chin J Bioproc Eng, 2014, 12 (5): 62-68]
28 王伟. 光质对中华盒形藻生长及生化组成的影响[J]. 武汉植物学研究, 1999, 17 (3):197-200 [Wang W. Effect of light quality on growth and biochemical compositions of a diatom Biddulphia sinensis [J]. J Wuhan Bot Res, 1999, 17 (3): 197-200]
29 Moheimani NR, Borowitzka MA. Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures [J]. Appl Microbiol Biot, 2011, 90 (4): 1399-1407
30 Sydney EB, Sturm W, Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. Potential carbon dioxide fixation by industrially important microalgae [J]. Bioresource Technol, 2010, 101 (15): 5892-5896
31 Ratha SK, Anil KS, Chandragiri S, Dolly WD, Rachapudi BNP, Radha P. Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation [J]. Aquaculture, 2013, 392-395: 69-76
32 Cohen Z, Khozin-goldberg I, Adlerstein D, Bigogno C. The role of triacylgly-cerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae [J]. Biochem Soc Trans, 2000, 28: 740-744

相似文献/References:

[1]王长海,鞠宝,温少红,等.紫球藻的载体培养研究[J].应用与环境生物学报,1999,5(05):496.
 WANG Changhai,et al..Studies on the carrier cultivation of Porphyridium cruentum[J].Chinese Journal of Applied & Environmental Biology,1999,5(04):496.
[2]罗绍银,高继海,叶生亮,等.一种提取富含油脂植物组织总RNA的改良SDS酸酚法[J].应用与环境生物学报,2009,15(02):284.[doi:10.3724/SP.J.1145.2009.00284]
 LUO Shaoyin,GAO Jihai,YE Shengliang,et al.An Improved SDS Acid Phenol Method for Total RNA Extraction from Plant Tissues Rich in Lipid[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):284.[doi:10.3724/SP.J.1145.2009.00284]
[3]于荣清,刘义,田思琪,等.产油脂微藻的分离鉴定及培养条件优化[J].应用与环境生物学报,2011,17(06):897.[doi:10.3724/SP.J.1145.2011.00897]
 YU Rongqing,LIU Yi,TIAN Siqi,et al.Isolation and Identification of Oil Microalgae and Optimization of Its Culture Conditions[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):897.[doi:10.3724/SP.J.1145.2011.00897]
[4]孙建瑞,宋涛,孙显,等.富油小球藻Chlorella protothecoides胞内多糖和油脂提取工艺优化[J].应用与环境生物学报,2014,20(04):615.[doi:10.3724/SP.J.1145.2013.12039]
 SUN Jianrui,SONG Tao,SUN Xian,et al.Extraction optimization of intracellular polysaccharide and lipid from oleaginous Chlorella protothecoides[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):615.[doi:10.3724/SP.J.1145.2013.12039]
[5]施华升,沈仁豪,胡振,等.外源活性污泥胞外聚合物对小球衣藻聚集行为的影响[J].应用与环境生物学报,2019,25(03):570.[doi:10.19675/j.cnki.1006-687x.201807027]
 SHI Huasheng,SHEN Renhao,HU Zhen & CHEN Guowei,et al.Effects of activated sludge-extracted extracellular polymeric substances on the aggregation of Chlamydomonas microsphaera[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):570.[doi:10.19675/j.cnki.1006-687x.201807027]

更新日期/Last Update: 2020-08-25