|本期目录/Table of Contents|

[1]张影,苟敏,孙照勇,等.混合糖发酵条件下甲酸抑制木糖发酵的机制[J].应用与环境生物学报,2017,23(06):990-998.[doi:10.3724/SP.J.1145.2017.02011]
 ZHANG Ying,GOU Min,SUN Zhaoyong,et al.The inhibitory mechanism of action of formic acid on xylose fermentation during mixed sugar fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):990-998.[doi:10.3724/SP.J.1145.2017.02011]
点击复制

混合糖发酵条件下甲酸抑制木糖发酵的机制()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年06期
页码:
990-998
栏目:
微生物资源发掘与生物合成专栏论文
出版日期:
2017-12-25

文章信息/Info

Title:
The inhibitory mechanism of action of formic acid on xylose fermentation during mixed sugar fermentation
作者:
张影 苟敏 孙照勇 夏子渊 汤岳琴
四川大学建筑与环境学院环境科学与工程系,四川省环境保护有机废弃物资源化利用重点实验室 成都 610065
Author(s):
ZHANG Ying GOU Min SUN Zhaoyong XIA Ziyuan & TANG Yueqin**
Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University; Sichuan Environmental Protection Key Laboratory of Organic Wastes Utilization, Chengdu 610065, China
关键词:
纤维素燃料乙醇酿酒酵母木糖发酵抑制物耐受甲酸抑制混合糖发酵
Keywords:
cellulosic fuel ethanol Saccharomyces cerevisiae xylose fermentation inhibitor tolerance formic acid inhibition mixed sugar fermentation
分类号:
Q920
DOI:
10.3724/SP.J.1145.2017.02011
摘要:
纤维素燃料乙醇生产面临的一个重要问题是纤维素原料预处理过程中产生多种副产物会显著抑制酿酒酵母的生长繁殖和发酵,其主要成分弱酸类中甲酸被认为具有最强的抑制效应. 为了解工业酿酒酵母混合糖发酵时木糖利用被甲酸特异性显著抑制的机制,为发酵菌株的抑制物耐受育种提供依据,以乙酸存在条件下的发酵为对照,研究甲酸存在条件下菌株分别发酵混合糖和单独木糖时的发酵性能以及糖代谢相关基因的表达差异、葡萄糖浓度对菌株发酵木糖和木糖代谢基因表达的影响,同时研究甲酸存在条件下葡萄糖代谢产物乙酸和乙醇对菌株发酵木糖的影响以及混合糖和单独木糖发酵过程中甲酸浓度变化和甲酸脱氢酶基因FDH1转录情况. 结果显示:葡萄糖只有在甲酸存在条件下才特异性地显著抑制木糖发酵,木糖消耗速率的下降与木糖还原酶(XR)和木糖醇脱氢酶(XDH)酶活下降有关;单独木糖发酵时,只有当乙酸、乙醇和甲酸共存时才表现出抑制效应,且随乙醇浓度增加抑制效应越明显,木糖发酵被抑制与XDH酶活下降有关,但乙酸、乙醇和甲酸三者对木糖发酵的协同抑制效应明显弱于60 g/L葡萄糖存在时的抑制;混合糖发酵时FDH1基因转录被抑制导致甲酸分解缓慢,对甲酸存在条件下木糖发酵被抑制有部分贡献. 综上,葡萄糖抑制甲酸分解与葡萄糖代谢产物乙酸、乙醇和甲酸的协同抑制对混合糖发酵时甲酸对木糖发酵特异性显著抑制有贡献,但尚存在其他未知抑制机制,还需进一步深入研究. (图8 表5 参24)
Abstract:
One of the important problems during cellulosic bioethanol production is that various byproducts generated during the pretreatment process seriously inhibit the growth and fermentation of Saccharomyces cerevisiae. Among these byproducts, weak acids, mainly including formic acid, acetic acid, and levulinic acid, are dominant. Formic acid is considered to have the strongest inhibitory effect. In this study, we investigated the inhibitory mechanism of formic acid action on xylose utilization during mixed sugar fermentation by an industrial S. cerevisiae xylose-fermenting strain, in order to provide the basics for breeding of inhibitor-tolerant strains. By the fermentation with the addition of acetic acid as the control, the fermentation performance of mixed sugars and xylose alone and the differences in the expression of sugar metabolism related–genes as well as the effect of glucose concentration on xylose fermentation and the expression of xylose metabolism–related genes were studied in the presence of formic acid. In addition, the effects of acetic acid and ethanol (both are metabolites of glucose) on xylose fermentation in the presence of formic acid, the changes of formic acid concentration, and the transcription of formic acid dehydrogenase gene FDH1 during the fermentation of mixed sugars and xylose alone were next investigated. The results showed that glucose inhibited the xylose fermentation specifically only in the presence of formic acid, and the decrease of xylose consumption rate was related to the decrease of the activities of xylose reductase (XR) and xylitol dehydrogenase (XDH). During the fermentation of xylose alone, the fermentation was inhibited only when the acetic acid, ethanol, and formic acid coexisted, and the inhibitory effect increased with the increasing ethanol concentration, to which the decrease of XDH activity was related. However, the synergistic inhibition by acetic acid, ethanol, and formic acid was still much weaker than the inhibitory effect of 60 g/L glucose. The much lower transcription level of the FDH1 gene resulted in a much lower formic acid decomposition rate during the fermentation of mixed sugars; this contributed to the specific inhibition of xylose fermentation by glucose in the presence of formic acid; however, the contribution was limited. To sum up, glucose inhibited the decomposition of formic acid, and the synergistic inhibition by glucose metabolites, acetic acid and ethanol, together with formic acid contributed to the specific serious inhibition of xylose fermentation by glucose in the presence of formic acid. However, there are other unknown inhibitory factors, which need further investigation.

参考文献/References:

1 Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects [J]. Prog Energy Combust Sci, 2012, 38: 449-467
2 Lu Y, Wang Y, Xu G, Chu J, Zhuang Y, Zhang S. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass [J]. Appl Biochem Biotechnol, 2010, 160: 360-369
3 Fang X, Shen Y, Zhao J, Bao X, Qu Y. Status and prospect of lignocellulosic bioethanol production in China [J]. Bioresour Technol, 2010, 101: 4814-4819
4 Cardona CA, Sánchez ?J. Fuel ethanol production: process design trends and integration opportunities [J]. Bioresour Technol, 2007, 98: 2415-2457
5 Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2011, 10: 1
6 Galbe M, Sassner P, Wingren A, Zacchi G. Process engineering economics of bioethanol production [M]//Advances in Biochemical Engineering/Biotechnology. New York: Springer, 2007, 108: 303-327
7 Chu BC, Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation [J]. Biotechnol Adv, 2007, 25: 425-441
8 Eliasson A, Christensson C, Wahlbom CF, Hahn-H?gerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J]. Appl Environ Microbiol, 2000, 66: 3381-3386
9 Nicolaou SA, Gaida SM, Papoutsakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation [J]. Metab Eng, 2010, 12: 307-331
10 Klinke HB, Thomsen A, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass [J]. Appl Microbiol Biotechnol, 2004, 66: 10-26
11 Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition [J]. Bioresour Technol, 2000, 74: 25-33
12 Casey E, Sedlak M, Ho NW, Mosier NS. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae [J]. FEMS Yeast Res, 2010, 10: 385-393
13 Almeida JR, Modig T, Petersson A, H?hn-H?gerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J]. J Chem Technol Biotechnol, 2007, 82: 340-349
14 Li YC, Gou ZX, Liu ZS, Tang YQ, Akamatsu T, Kida K. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain [J]. Biotechnol Lett, 2014, 36: 2011-2021
15 Overkamp KM, K?tter P, van der Hoek R, Schoondermark-Stolk S, Luttik MA, van Dijken JP, Pronk JT. Functional analysis of structural genes for NAD+-dependent formate dehydrogenase in Saccharomyces cerevisiae [J]. Yeast, 2002, 19: 509-520
16 Li YC, Mitsumasu K, Gou ZX, Gou M, Tang YQ, Li GY, Wu XL, Akamatsu T, Taguchi H, Kida K. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37 [J]. Appl Microbiol Biotechnol, 2016, 100: 1531-1542
17 Matsushika A, Goshima T, Fujii T, Inoue H, Sawayama S, Yano S. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae [J]. Enzyme Microb Technol, 2012, 51: 16-25
18 Branco RF, dos Santos JC, Sarrouh BF, Rivaldi JD, Pessoa JrA, da Silva SS. Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values [J]. J Chem Technol Biotechnol, 2009, 84: 326-330
19 Tang Y, An M, Liu K, Nagai S, Shigematsu T, Morimura S, Kida K. Ethanol production from acid hydrolysate of wood biomass using the focculating yeast Saccharomyces cerevisiae strain KF-7 [J]. Proc Biochem, 2006, 41: 909-914
20 Karhumaa K, Fromanger R, Hahn-H?gerdal B, Gorwa-Grauslund MF. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2007, 73: 1039-1046
21 彭炳银, 陈晓, 沈煜, 鲍晓明. 不同启动子控制下木酮糖激酶的差异表达及其对酿酒酵母木糖代谢的影响[J]. 微生物学报, 2011, 51: 914-922 [Peng BY, Chen X, Shen L, Bao XM. Effect of controlled overexpression of xylulokinase by different promoters on xylose metabolism in Saccharomyces cerevisiae [J]. Acta Microbiol Sin, 2011, 51: 914-922]
22 Do?an A, Demirci S, Aytekin A?, ?ahin, F. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production [J]. Appl Microbiol Biotechnol, 2014, 174: 28-42
23 Hasunuma T, Sung Km, Sanda T, Yoshimura K, Matsuda F, Kondo A. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2011, 90: 997-1004
24 苟梓希. 工业酿酒酵母对木质纤维素水解液抑制物的耐受性研究[D]. 成都: 四川大学, 2015 [Gou ZX. Tolerance of industrial Saccharomyces cerevisiae strains to inhibitors in lignocellulosic hydrolysate [D]. Chengdu: Sichuan University, 2015]

相似文献/References:

[1]郜瑞莹,王建龙.酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究[J].应用与环境生物学报,2007,13(06):848.
 GAO Ruiying,et al..Kinetics and Equilibrium of Cu2+ Biosorption by Dried Biomass of Saccharomyces cerevisia[J].Chinese Journal of Applied & Environmental Biology,2007,13(06):848.
[2]李岩,王海燕,张义正.甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位[J].应用与环境生物学报,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
 LI Yan,WANG Haiyan,ZHANG Yizheng.Localization of IbSUT1x Protein from Ipomoea batatas (L.) Lam in Yeast Cells[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
[3]李宇浩,靳艳玲,龙飞,等.降粘酶在新鲜木薯发酵生产高浓度乙醇中的应用[J].应用与环境生物学报,2013,19(03):501.[doi:10.3724/SP.J.1145.2013.00501]
 LI Yuhao,JIN Yanling,LONG Fei,et al.Using Viscosity Reducing Enzyme as Annexing Agent in the Very High Gravity Ethanol Fermentation with Fresh Cassava[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):501.[doi:10.3724/SP.J.1145.2013.00501]
[4]柯崇榕,吴毕莎,邵庆伟,等.酿酒酵母PDC1基因过表达菌株的构建[J].应用与环境生物学报,2013,19(04):704.[doi:10.3724/SP.J.1145.2013.00704]
 KE Chongrong,WU Bisha,SHAO Qingwei,et al.Construction of Saccharomyces cescerevisiae Mutant with Overexpression of PDC1 Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):704.[doi:10.3724/SP.J.1145.2013.00704]
[5]盛冠一,诸葛斌,宗红,等.高灵敏度铜抗性酿酒酵母表达系统的构建与应用[J].应用与环境生物学报,2014,20(03):357.[doi:10.3724/SP.J.1145.2014.12033]
 SHENG Guanyi,ZHUGE Bin,ZONG Hong,et al.Construction and application of the high sensitivity expression system of copper-resistant Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):357.[doi:10.3724/SP.J.1145.2014.12033]
[6]周利,汤岳琴,孙照勇,等.基于连续发酵驯化的高耐盐性酿酒酵母的育种[J].应用与环境生物学报,2014,20(03):360.[doi:10.3724/SP.J.1145.2014.11032]
 ZHOU Li,TANG Yueqin,SUN Zhaoyong,et al.Breeding of high salt-tolerant Saccharomyces cerevisiae strains based on continuous ethanol fermentation[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):360.[doi:10.3724/SP.J.1145.2014.11032]
[7]张明明 万青青 张克俞 熊 亮 白凤武,赵心清**.过表达分支酸歧化酶编码基因ARO7对酿酒酵母抑制物耐受性的影响*[J].应用与环境生物学报,2016,22(02):201.[doi:10.3724/SP.J.1145.2015.09013]
 ZHANG Mingming,WAN Qingqing,ZHANG Keyu,et al.Effect of overexpression of chorismate mutase encoding gene ARO7 on theinhibitor tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):201.[doi:10.3724/SP.J.1145.2015.09013]
[8]谷鸿宇,诸葛斌,方慧英,等.渗透压调控启动子表达木糖醇脱氢酶基因XYL2对重组酿酒酵母木糖代谢的影响[J].应用与环境生物学报,2016,22(06):1122.[doi:10.3724/SP.J.1145.2016.01035]
 GU Hongyu,ZHUGE Bin,et al.Effect of controlled overexpression of XYL2 coding for xyltiol dehydrogenase by osmo-responsive promoters on xylose metabolism in Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):1122.[doi:10.3724/SP.J.1145.2016.01035]
[9]丁伟军,李波,张影,等.木糖发酵酿酒酵母抑制物耐受能力提升及利用秸秆原料的乙醇发酵性能[J].应用与环境生物学报,2018,24(04):879.[doi:10.19675/j.cnki.1006-687x.2018.05019]
 DING Weijun,LI Bo,ZHANG Ying,et al.Enhancement of inhibitor tolerance during xylose fermentation of Saccharomyces cerevisiae and ethanol fermentation using agricultural straw[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):879.[doi:10.19675/j.cnki.1006-687x.2018.05019]
[10]缪晡,苟敏,陈栋,等.不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价[J].应用与环境生物学报,2019,25(05):1185.[doi:10.19675/j.cnki.1006-687x.2019.07015]
 MIAO Pu,GOU Min,CHEN Dong & TANG Yueqin,et al.Genome-wide evaluation of constitutive and inducible promotors in Saccharomyces cerevisiae utilizing different carbon sources[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1185.[doi:10.19675/j.cnki.1006-687x.2019.07015]

更新日期/Last Update: 2017-12-25