|本期目录/Table of Contents|

[1]孙新新,宁娜,谭慧军,等.白蚁肠道微生物多样性和作用研究进展[J].应用与环境生物学报,2017,23(04):764-770.[doi:10.3724/SP.J.1145.2016.09016]
 SUN Xinxin,NING Na,TAN Huijun & NI Jinfeng**.Effects of tannic acid on salt ion availability of saline-alkali soils in the Yellow River Delta[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):764-770.[doi:10.3724/SP.J.1145.2016.09016]
点击复制

白蚁肠道微生物多样性和作用研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年04期
页码:
764-770
栏目:
综述
出版日期:
2017-08-25

文章信息/Info

Title:
Effects of tannic acid on salt ion availability of saline-alkali soils in the Yellow River Delta
作者:
孙新新宁娜谭慧军倪金凤
山东大学微生物技术国家重点实验室 济南 250000
Author(s):
SUN Xinxin NING Na TAN Huijun & NI Jinfeng**
State Key Laboratory of Microbial Technology, Shandong University, Jinan 250000, China
关键词:
白蚁肠道微生物多样性食性碳氮循环
Keywords:
termite symbiotic microorganism diversity feeding diet carbon and nitrogen cycling
分类号:
Q938 : Q958.122.3
DOI:
10.3724/SP.J.1145.2016.09016
摘要:
白蚁在热带森林系统碳循环和氮循环中起重要作用. 白蚁肠道中的微生物包括原生生物、细菌、古菌和真菌,帮助白蚁消化食物. 本文主要概括近年来白蚁肠道微生物多样性研究方面的新进展,介绍白蚁肠道微生物的组成和作用. 白蚁种类繁多,根据其后肠内是否含有原生生物,分为低等白蚁和高等白蚁两大类群. 不同白蚁食性不同,其肠道微生物的组成也不同. 白蚁肠道微生物对于宿主具有重要的作用,帮助宿主分解木质纤维素,发酵产生乙酸、甲烷和氢气(中间产物),除此之外,在热带以土壤为食白蚁的腐殖质矿化作用有助于氮循环. 白蚁与微生物的共生关系是目前较受关注的研究热点,不仅有助于人们了解白蚁共生菌群落间的互作及其与宿主间的关系,而且可能为工业生产纤维素乙醇提供潜在的方法. 分离鉴定方法和高通量测序技术的发展将有助于进一步深入了解白蚁肠道微生物的结构组成和功能. (表2 参81)
Abstract:
Termites are important contributors to carbon and nitrogen cycling in tropical ecosystems. Termites depend on gut microbes for digesting food, and these gut microbes include protists, bacteria, archaea and fungi. Here, the recent advances in microbial diversity of termite gut is summarized and the roles of gut microorganisms are described. There are many different kinds of termites. According to the presence or absence of protists in the hindgut, termites are conventionally classified into two groups: lower termites and higher termites. Different termites have different feeding diets and the composition of the gut microbes also varies. Gut microbes play important roles in nutrition and energy metabolism of termites. They help the host in decomposing lignocellulose, producing acetic acid, methane and hydrogen (intermediate). In addition, humus mineralization of the soil-feeding termites in the tropics is also helpful to the nitrogen cycle. Currently, the relationship between termites and symbiotic microorganisms has been a research focus. The studies on gut microbes not only facilitate our understanding of the symbiotic relationship between termites and microbes, the interaction among microbial communities, but also offer potential means for industrial production of cellulosic ethanol. With developments in the isolation methods and high-throughput sequencing technology, the structure and function of symbiotic microbes in the gut of termites will be further researched.

参考文献/References:

1 Inward DJ, Vogler AP, Eggleton P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology [J]. Mol Phylogenet Evol, 2007, 44 (3): 953-967
2 Ni JF, Tokuda G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota [J]. Biotechnol Adv, 2013, 31 (6): 838-850
3 Hongoh Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut [J]. Cell Mol Life Sci, 2011, 68 (8): 1311-1325
4 宁娜, 张倪, 吴燕, 倪金凤. 台湾乳白蚁和黄翅大白蚁消化道主要木质纤维素降解酶活性比较[J]. 应用与环境生物学报, 2015, 21 (4): 678-682 [Ning N, Zhang N, Wu Y, Ni JF. Comparison of lignocellulolytic enzyme activities of the fungus-growing termite Macrotermes barneyi and the lower termite Coptotermes formosanus [J]. Chin J Appl Environ Biol, 2015, 21 (4): 678-682]
5 相辉, 周志华. 白蚁及共生微生物木质纤维素水解酶的种类[J]. 应用昆虫学报, 2009, 46 (1): 32-40 [Xiang H, Zhou ZH. Lignocellulolytic enzymes in termite and its symbiotic microbes [J]. Chin J Appl Entomol, 2009, 46 (1): 32-40]
6 Brune A. Symbiotic digestion of lignocellulose in termite guts [J]. Nat Rev Microbiol, 2014, 12 (3): 168-180
7 Watanabe H, Tokuda G. Animal cellulases [J]. Cell Mol Life Sci, 2001, 58 (9): 1167-1178
8 Watanabe H, Tokuda G. Cellulolytic systems in insects [J]. Annu Rev Entomol, 2010, 55: 609-632
9 Hongoh Y. Diversity and genomes of uncultured microbial symbionts in the termite gut [J]. Biosci Biotechnol Biochem, 2010, 74 (6): 1145-1151
10 Shi W, Syrenne R, Sun JZ, Yuan JS. Molecular approaches to study the insect gut symbiotic microbiota at the 憃mics?age [J]. Insect Sci, 2010, 17 (17): 199-219
11 Ikeda‐Ohtsubo W, Strassert JFH, K鰄ler T, Mikaelyan A, Gregor I, Mchardy AC, Tringe SG, Hugenholtz P, Radek R, Brune A. 慍andidatus Adiutrix intracellularis? an endosymbiont of termite gut flagellates, is the first representative of a deep‐branching clade of Deltaproteobacteria and a putative homoacetogen [J]. Environ Microbiol, 2016, 18 (8): 2548-2564
12 Fang H, L?W, Huang Z, Liu SJ, Yang H. Gryllotalpicola reticulitermitis sp. nov. isolated from a termite gut [J]. Int J Syst Evol Microbiol, 2014, 65 (Pt 1): 78-83
13 Bakalidou A, Kampfer P, Berchtold M, Kuhnigk T, Wenzel M, Konig H. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis [J]. Int J Syst Evol Microbiol, 2002, 52 (Pt 4): 1185-1192
14 Sakamoto M, Ohkuma M. Bacteroides reticulotermitis sp. nov., isolated from the gut of a subterranean termite (Reticulitermes speratus) [J]. Int J Syst Evol Microbiol, 2013, 63 (Pt 2): 691-695
15 Pramono AK, Sakamoto M, Iino T, Hongoh Y, Ohkuma M. Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus [J]. Int J Syst Evol Microbiol, 2015, 65 (Pt 2): 681-685
16 Yang YJ, Zhang N, Ji SQ, Lan X, Zhang KD, Shen YL, Li FL, Ni JF. Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite [J]. Int J Syst Evol Microbiol, 2014, 64 (9): 2956-2961
17 Hao Z, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia ) - an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase [J]. Environ Microbiol, 2016, 18 (1): 191-204
18 Tarayre C, Brognaux A, Brasseur C, Bauwens J, Millet C, Matt閛tti C, Destain J, Vandenbol M, Portetelle D, Pauw ED. Isolation and cultivation of a xylanolytic Bacillus subtilis extracted from the gut of the termite Reticulitermes santonensis [J]. Appl Biochem Biotechnol, 2013, 171 (1): 225-245
19 Wang H, Lin H, Trandinh N, Li D, Greenfield P, Midgley DJ. Draft genome sequence of Clostridium sp. Ne2, Clostridia from an enrichment culture obtained from Australian Subterranean termite, Nasutitermes exitiosus [J]. Genome Announc, 2014, 3 (2): 304-315
20 Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK. A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut [J]. J Ind Microbiol Biotechnol, 2012, 39 (6): 851-860
21 Wang XM, Ma SC, Yang SY, Peng R, Zheng Y, Yang H. Paenibacillus nasutitermitis sp. nov., isolated from a termite gut [J]. Int J Syst Evol Microbiol, 2015, 66 (2): 901-905
22 Yang SY, Zheng Y, Huang Z, Wang XM, Yang H. Lactococcus nasutitermitis sp. nov. isolated from a termite gut [J]. Int J Syst Evol Microbiol, 2015, 66 (1): 518-522
23 Hattori S, Hongoh Y, Itoh T, Deevong P, Trakulnaleamsai S, Noparatnaraporn N, Kudo T, Ohkuma M. Sporomusa intestinalis sp. nov., a homoacetogenic bacterium isolated from the gut of a higher termite, Termes comis (Termitinae) [J]. J Gen Appl Microbiol, 2013, 59 (4): 321-324
24 Fr鰄lich J, Sass H, Babenzien HD, Kuhnigk T, Varma A, Saxena S, Nalepa C, Pfeiffer P, K鰊ig H. Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut?of the lower termite Mastotermes darwiniensis [J]. Can J Microbiol, 1999, 45 (2): 145-152
25 Tikhe CV, Martin TM, Gissendanner CR, Husseneder C. Complete genome sequence of Citrobacter Phage CVT22 isolated from the gut of the Formosan Subterranean termite, Coptotermes formosanus Shiraki [J]. Genome Announc, 2015, 3 (4): e00408-15
26 Potrikus CJ, Breznak JA. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites [J]. Appl Environ Microbiol, 1977, 33 (2): 392-399
27 Vasan PT, Piriya PS, Prabhu DIG, Vennison SJ. Cellulosic ethanol production by Zymomonasmobilis harboring an endoglucanase gene from Enterobacter cloacae [J]. Bioresour Technol, 2010, 102 (3): 2585-2589
28 Doolittle M, Raina A, Lax A, Boopathy R. Presence of nitrogen fixing Klebsiella pneumoniae in the gut of the Formosan subterranean termite (Coptotermes formosanus) [J]. Bioresour Technol, 2008, 99 (8): 3297-3300
29 Sapountzis P, Gruntjes T, Otani S, Estevez J, Da CR, Rd PG, Perna NT, Poulsen M. The Enterobacterium Trabulsiella odontotermitis presents novel adaptations related to its association with fungus-growing termites [J]. Appl Environ Microbiol, 2015, 81 (19): 6577-6588
30 Wertz JT, Breznak JA. Stenoxybacter acetivorans gen. nov., sp nov., an acetate-oxidizing obligate microaerophile among diverse O2-consuming bacteria from termite guts [J]. Appl Environ Microbiol, 2007, 73 (21): 6819-6828
31 Fr鰄lich J, Koustiane C, K鋗pfer P, Rossell?Mora R, Valens M, Berchtold M, Kuhnigk T, Hertel H, Maheshwari DK, K鰊ig H. Occurrence of rhizobia in the gut of the higher termite Nasutitermes nigriceps [J]. Syst Appl Microbiol, 2007, 30 (1): 68-74
32 Droge S, Frohlich J, Radek R, Konig H. Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus [J]. Appl Environ Microbiol, 2006, 72 (1): 392-397
33 Tushar L, Sravanthi T, Sasikala C, Ramana CV. Draft genome sequence of Spirochaeta sp. strain JC202, an endosymbiont of the termite (Isoptera) gut [J]. Genome Announc, 2014, 3 (1): e01481-14
34 Dr鰃e S, Rachel R, Radek R, K鰊ig H. Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae [J]. Int J Syst Evol Microbiol, 2008, 58 (5): 1079-1083
35 Kotak M, Isanapong J, Goodwin L, Bruce D, Chen A, Han CS, Huntemann M, Ivanova N, Land ML, Nolan M. Complete genome sequence of the Opitutaceae Bacterium Strain TAV5, a potential facultative methylotroph of the wood-feeding termite Reticulitermes flavipes [J]. Genome Announc, 2015, 3 (2): e00060-15
36 Leadbetter JR, Breznak JA. Physiological ecology of Methano-brevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes [J]. Appl Environ Microbiol, 1996, 62 (10): 3620-3631
37 Bignell DE, Roisin Y, Lo N. Biology of Termites: a Modern Synthesis[M]. Netherlands: Springer, 2011: 439-475
38 赵凯, 常志威, 张小燕, 郝妍, 吴桐, 平文祥, 周东坡. 白蚁肠道共生微生物多样性及其防治方法研究现状[J]. 应用与环境生物学报, 2012, 18 (2): 331-337 [Zhao K, Chang ZW, Zhang XY, Hao Y, Wu T, Ping WX, Zhou DP. Recent advances in diversity of symbiotic microbes in termite gut and termite control methods [J]. Chin J Appl Environ Biol, 2012, 18 (2): 331-337]
39 Ikeda-Ohtsubo W, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and 慍andidatus Endomicrobium trichonymphae?[J]. Mol Ecol, 2009, 18 (2): 332-342
40 Ohkuma M. Termite symbiotic systems: efficient bio-recycling of lignocellulose [J]. Appl Microbiol Biotechnol, 2003, 61 (1): 1-9
41 Hackstein JHP. (Endo)symbiotic methanogenic Archaea [J]. Microbiol Monogr, 2010, 19: 55-59
42 Thompson CL, Vier R, Mikaelyan A, Wienemann T, Brune A. 慍andidatus Arthromitus?revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae [J]. Environ Microbiol, 2012, 14 (6): 1454-1465
43 Huang XF, Bakker MG, Judd TM, Reardon KF, Vivanco JM. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates [J]. Microb Ecol, 2013, 65 (3): 531-536
44 Mikaelyan A, Dietrich C, K鰄ler T, Poulsen M, Sillam-Duss鑣 D, Brune A. Diet is the primary determinant of bacterial community structure in the guts of higher termites [J]. Mol Ecol, 2015, 24 (20): 5284-5295
45 Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, Long Y, Xie L, Wang S, Huang Y, Zhou Z. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis) [J]. PLoS ONE, 2013, 8 (7): e69184
46 Makonde HM, Mwirichia R, Osiemo Z, Boga HI, Klenk HP. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils [J]. Springerplus, 2015, 4 (471): 1-11
47 Dietrich C, K鰄ler T, Brune A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events [J]. Appl Environ Microbiol, 2014, 80 (7): 2261-2269
48 Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, Sillam-Duss鑣 D, Brune A. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites [J]. Microbiome, 2015, 3 (1): 1-6
49 Santana RH, Catao EC, Lopes FA, Constantino R, Barreto CC, Kruger RH. The gut microbiota of workers of the litter-feeding termite Syntermes wheeleri (Termitidae: Syntermitinae): archaeal, bacterial, and fungal communities [J]. Microb Ecol, 2015, 70 (2): 545-556
50 Su LJ, Liu YQ, Liu H, Wang Y, Li Y, Lin HM, Wang FQ, Song AD. Linking lignocellulosic dietary patterns with gut microbial Enterotypes of Tsaitermes ampliceps and comparison with Mironasutitermes shangchengensis [J]. Genet Mol Res, 2015, 14 (4): 13954-13967
51 Brugerolle G, Radek R. Symbiotic Protozoa of Termites [J]. Soil Biol, 2005, 6: 243-269
52 Brune A, Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution [J]. Annu Rev Microbiol, 2015, 69: 145-166
53 Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, Ohkuma M. Phylogenetic diversity, localization, and cell morphologies of members of the Candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts [J]. Appl Environ Microbiol, 2006, 72 (10): 6780-6788
54 Rahman NA, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes [J]. Microbiome, 2015, 3 (1): 1-16
55 Tokuda G, Watanabe H. Hidden cellulases in termites: revision of an old hypothesis [J]. Biol Lett, 2007, 3 (3): 336-339
56 Warnecke F, Luginb黨l P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, Mchardy AC, Djordjevic G, Aboushadi N. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite [J]. Nature, 2007, 450 (7169): 560-565
57 Tim K, Ulrich S, Katja M, Andreas B. Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.) [J]. Environ Microbiol, 2008, 10 (5): 1260-1270
58 Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A. Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.) [J]. Appl Environ Microbiol, 2003, 69 (10): 6018-6024
59 He SM, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites [J]. PLoS ONE, 2013, 8 (4): e61126
60 Donovan SE, Eggleton P, Bignell DE. Gut content analysis and a new feeding group classification of termites [J]. EcolEntomol, 2001, 26 (4): 356-366
61 Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus [J]. Mol Ecol, 2006, 15 (2): 505?16
62 Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, Long Y, Xie L, Wang S, Huang Y. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis) [J]. PLoS ONE, 2013, 8 (7): e69184
63 Peterson BF, Scharf ME. Lower termite associations with microbes: synergy, protection, and interplay [J]. Front Microbiol, 2016, 7: 00422
64 Poulsen M. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota [J]. Environ Microbiol, 2015, 17 (8): 2562-2572
65 Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites [J]. Microb Ecol, 2012, 63 (4): 975-985
66 Tholen A, Brune A. Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. [J]. Environ Microbiol, 2000, 2 (4): 436-449
67 Pester M, Brune A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts [J]. ISME J, 2007, 1 (6): 551-565
68 Anklin-M黨lemann R, Bignell DE, Veivers PC, Leuthold RH, Slaytor M. Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus [J]. J Insect Physiol, 1995, 41 (11): 929-940
69 Sugimoto A, Inoue T, Tayasu I, Miller L, Takeichi S, Abe T. Methane and hydrogen production in a termite-symbiont system [J]. J Agr Sci, 1998, 13 (2): 241?57
70 Baldi A, Bardelli S, Zucca E. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) [J]. Appl Environ Microbiol, 1999, 65 (10): 4490-4496
71 Inoue J, Kudo T, Ui S, Ohkuma M. Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus [J]. Mater Construcc, 2007, 6 (10): 1925-1932
72 Breznak JA, Switzer JM. Acetate synthesis from H2 plus CO2 by termite gut microbes [J]. Appl Environ Microbiol, 1986, 52 (4): 623-630
73 Breznak JA, Switzer JM, Seitz HJ. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites [J]. Arch Microbiol, 1988, 150 (3): 282-288
74 Kane MD, Breznak JA. Acetonema longum gen.nov.sp.nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis [J]. Arch Microbiol, 1991, 156 (2): 91-98
75 Salmassi TM, Leadbetter JR. Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis [J]. Microbiology, 2003, 149 (Pt 9): 2529-2537
76 Pester M, Brune A. Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites [J]. Environ Microbiol, 2006, 8: 1261-1270
77 Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite [J]. Nature, 2007, 450 (7169): 560-565
78 Leadbetter JR, Breznak JA. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes [J]. Appl Environ Microbiol, 1996, 62 (10): 3620-3631
79 Leadbetter JR, Crosby LD, Breznak JA. Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts [J]. Arch Microbiol, 1998, 169 (4): 287-292
80 王亚召, 嵇保中, 刘曙雯, 丁芳. 白蚁共生菌固氮研究进展[J]. 应用与环境生物学报, 2016, 22 (2): 342-349 [Wang YZ, Ji BZ, Liu SW, Ding F. Research progress of nitrogen fixation of symbiotic bacteria in termites [J]. Chin J Appl Envirom Biol, 2016, 22 (2): 342-349]
81 Du X, Li X, Wang Y, Peng J, Hong H, Yang H. Phylogenetic diversity of nitrogen fixation genes in the intestinal tract of Reticulitermes chinensis Snyder [J]. Curr Microbiol, 2012, 65 (5): 547-551

相似文献/References:

[1]赵凯,常志威,张小燕,等.白蚁肠道共生微生物多样性及其防治方法研究现状[J].应用与环境生物学报,2012,18(02):331.[doi:10.3724/SP.J.1145.2012.00331]
 ZHAO Kai,CHANG Zhiwei,ZHANG Xiaoyan,et al.Recent Advances in Diversity of Symbiotic Microbes in Termite Gut and Termite Control Methods[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):331.[doi:10.3724/SP.J.1145.2012.00331]
[2]谭周进,张华玲,周赛男,等.菌群失调小鼠腹泻造模及超微中药干预过程中肠道微生物的变化[J].应用与环境生物学报,2013,19(03):449.[doi:10.3724/SP.J.1145.2013.00449]
 TAN Zhoujin,ZHANG Hualing,ZHOU Sainan,et al.Change of Intestinal Microbes in Dysbacteriosis-modeled Mice Treated with Ultra-micro Powder of Qiweibaizhusan[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):449.[doi:10.3724/SP.J.1145.2013.00449]
[3]陈丹丹,顾胜华,张金娜,等.肠道菌群对免疫系统的影响及其群落分析方法[J].应用与环境生物学报,2013,19(03):542.[doi:10.3724/SP.J.1145.2013.00542]
 CHEN Dandan,GU Shenghua,ZHANG Jinna,et al.Effect of Intestinal Microbes on the Immune System and the Latest Research Methods[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):542.[doi:10.3724/SP.J.1145.2013.00542]
[4]张华玲,蔡莹,谭周进,等.超微七味白术散对菌群失调腹泻小鼠肠道微生物代谢多样性的影响[J].应用与环境生物学报,2014,20(01):93.[doi:10.3724/SP.J.1145.2014.00093]
 ZHANG Hualing,CAI Ying,TAN Zhoujin,et al.Effects of ultra-micro powder Qiweibaizhusan on metabolism diversity of intestinal microflora in diarrhea mice with dysbacteriosis[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):93.[doi:10.3724/SP.J.1145.2014.00093]
[5]郭抗萧,谭周进,谢梦洲,等.超微七味白术散与酵母菌协同治疗小鼠菌群失调腹泻[J].应用与环境生物学报,2015,21(01):61.[doi:10.3724/SP.J.1145.2013.10002]
 GUO Kangxiao,TAN Zhoujin,XIE Mengzhou,et al.The synergic effect of ultra-micro powder Qiweibaizhusan combined with yeast on dysbacteriotic diarrhea mice[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):61.[doi:10.3724/SP.J.1145.2013.10002]
[6]郭抗萧,肖新云,刘又嘉,等.七味白术散对菌群失调腹泻小鼠肠道乳酸杆菌多样性的影响[J].应用与环境生物学报,2015,21(06):1071.[doi:10.3724/SP.J.1145.2015.04030]
 GUO Kangxiao,XIAO Xinyun,LIU Youjia,et al.Effect of Qiweibaizhusan on the intestinal lactobacilli diversity in dysbacteria diarrheal mice[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):1071.[doi:10.3724/SP.J.1145.2015.04030]
[7]唐 标 肖新云 刘又嘉 姚天振 尹抗抗** 谭周进.降脂理肝汤对高脂饮食诱导的非酒精性脂肪肝大鼠肠道微生物及酶活性的影响[J].应用与环境生物学报,2016,22(03):442.[doi:10.3724/SP.J.1145.2015.11001]
 TANG Biao,XIAO Xinyun,LIU Youjia,et al.Effects of Jiangzhiligan Decoction on intestinal microbiota and enzyme activities of rats with non-alcoholic fatty liver disease induced by high-fat diet*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):442.[doi:10.3724/SP.J.1145.2015.11001]
[8]李丹丹 贺璐 张雪 赵先平 郭纯 谭周进.四磨汤口服液对脾虚便秘小鼠肠道细菌多样性的影响[J].应用与环境生物学报,2016,22(06):1103.[doi:10.3724/SP.J.1145.2015.12027]
 LI Dandan,HE Lu,ZHANG Xue,et al.The influence of Simo Decoction on intestinal bacterial diversity in mice with spleen-deficient constipationn[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):1103.[doi:10.3724/SP.J.1145.2015.12027]
[9]何永果,晋蕾,李果,等.基于高通量测序技术研究成年大熊猫肠道菌群[J].应用与环境生物学报,2017,23(05):771.[doi:10.3724/SP.J.1145.2016.05023]
 HE Yongguo,JIN Lei,LI Guo,et al.Gut microbiome of adult giant pandas based on high-throughput sequencing technology[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):771.[doi:10.3724/SP.J.1145.2016.05023]
[10]詹明晔,付小花,张姝,等.不同地区成体大熊猫肠道微生物结构差异性及其与纤维素消化能力的相关性[J].应用与环境生物学报,2019,25(03):736.[doi:10.19675/j.cnki.1006-687x.201808012]
 ZHAN Mingye,FU Xiaohua,ZHANG Shu,et al.Differences of the intestinal microbial structure of adult giant panda in different regions and its correlation with the digestibility of cellulose[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):736.[doi:10.19675/j.cnki.1006-687x.201808012]

更新日期/Last Update: 2017-08-25