|本期目录/Table of Contents|

[1]高常军,高晓翠,贾朋.水文连通性研究进展[J].应用与环境生物学报,2017,23(03):586-594.[doi:2016.06028]
 GAO Changjun,GAO Xiaocui & JIA Peng.Summary comments on hydrologic connectivity[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):586-594.[doi:2016.06028]
点击复制

水文连通性研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年03期
页码:
586-594
栏目:
综述
出版日期:
2017-06-25

文章信息/Info

Title:
Summary comments on hydrologic connectivity
作者:
高常军高晓翠贾朋
1广东省森林培育与保护利用重点实验室 广州 510520 2广东省林业科学研究院 广州 510520 3华南农业大学林学与风景园林学院 广州 510642
Author(s):
GAO Changjun GAO Xiaocui & JIA Peng
1Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, China 2Guangdong Academy of Forestry, Guangzhou 510520, China 3College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
关键词:
流域水文连通水生态系统生态修复生态水文生态完整性
Keywords:
watershed hydrologic connectivity aquatic ecosystem ecology restoration ecohydrology ecology integrity
分类号:
X171.1 : X143
DOI:
2016.06028
摘要:
水文连通是反映流域水生态过程、蓄泄能力及修复效果的关键指标,也是国家解决水问题的重要途径. 在总结前人研究基础上,尝试界定水文连通性的内涵及范畴,同时对水文连通性的评估方法、理论体系及其应用实践进行综述. 水文连通性的狭义概念是指流域内物质以水为媒介,在空间异质性景观或斑块内(间)进行传输的便利程度;广义概念则指地球外部各圈层内(间)各种生态水文及生物地球化学过程在不同时空尺度上的流通程度. 将目前已有的水文连通性评估方法划分为原位监测、水文模型、连通性函数和图论等4类,现有方法多关注流域尺度内地表水文结构连通度的定量表征,尚不具备尺度推绎性. 水文连通理论体系研究目前尚落后于实践、未成系统. 最后介绍了水文连通在影响平原水网调蓄能力和修复受损水生态系统功能两个方面的应用实践. 未来应结合地学信息技术与野外监测数据,开展跨多时空尺度域的综合水文连通性定量评估;重点关注连通工程前中后需遵循的原理;应用实践应重点关注不同河流结构的河网调蓄特征和最佳蓄泄调度,以及构建能够表征各种关键模块的综合水文连通修复模型框架,筛选能够指示修复过程或效果的关键因素. (图2 表1 参62)
Abstract:
Hydrologic connectivity (HC) is a key index for reflecting the process, storage-discharge capacity, and effectiveness of aquatic ecosystem restoration on a watershed scale. Meanwhile, it is also an important way to resolve water problems in a nation. Therefore, it is necessary to summarize the research progress in HC. Based on a summary of available research, the concept, type, evaluation method, theory system, and application of HC was summarized. The narrow concept of HC refers the degree to which water-mediated transfer of matter within or across a spatially heterogeneous landscape or patches, while the narrow concept of HC means the degree of connection to all kinds of eco-hydrological and biogeochemical processes across spatio-temporal scales within or between the earth’s outer spheres. The current HC evaluation methods were generalized as in-situ monitoring, hydrologic model, connectivity functions, and graph theory. All of these methods were concentrated in a quantitative expression of the surface hydrological structure connectivity within watersheds, which cannot be applied on other scales. The study of HC theory is still lagging behind practice and is not systematic. Finally, applying HC to influence the storage capacity of freshwater in plains areas and restore the riverine system was introduced briefly. In the future, HC evaluation methods could quantify integrated HC across space and time combined with geological information technology and the field monitoring data. For the application of HC, the directions of future study were discussed, including the principles around connectivity engineering, storage characteristics, and the best storage-discharge regulations for different stream structures. The integrated model framework should contain all kinds of key modules, e.g., the impacts of climate change and anthropogenic activities, ecological processes, and restoration cost and value, and which can identify the critical factors for indicating restoration processes or effects. These findings may provide a theoretical basis for managers to restore ecosystems or adopt adaptive countermeasures.

参考文献/References:

1 Ward J, Standford J. The four-dimensional nature of lotic ecosystems [J]. J N Am Benthol Soc, 1989, 8: 2-8
2 Pringle CM. Hydrologic connectivity and the management of biological reserves: a global perspective [J]. Ecol Appl, 2001, 11 (4): 981-998
3 陈敏建, 王立群, 丰华丽, 戴向前, 黄昌硕, 王高旭. 湿地生态水文结构理论与分析[J]. 生态学报, 2008, 28 (6): 2887-2893 [Chen JM, Wang LQ,Feng HL, Dai XQ, Huang CS,Wang GX. Theory and analysis of wetlands’ eco-hydrological configuration [J]. Acta Ecol Sin, 2008, 28 (6): 2887-2893]
4 Kalff J. Limnology: Inland Water Ecosystems [M]. New Jersey: Prentice Hall, 2002
5 Allan JD, Castillo MM. Stream Ecology: Structure and Function of Running Waters [M]. Dordrecht: Springer, 2007
6 Pringle CM. Riverine connectivity: Conservation and management implications for remnant natural areas in complex landscapes [J]. Verhandlungen Intern Vereinigung Theor Angewandte Limnol, 2000, 27: 1-16
7 陈云霞, 许有鹏, 付维军. 浙东沿海城镇化对河网水系的影响[J]. 水科学进展, 2007, 18 (1): 68-73 [Chen YX, Xu YP, Fu WJ. Influences of urbanization on river network in the coastal areas of East Zhejiang province [J]. Adv Water Sci, 2007, 18 (1): 68-73]
8 Tetzlaff D, Soulsby C, Bacon PJ, Youngson AF, Gibbins C, Malcolm IA. Connectivity between landscapes and riverscapes—a unifying theme in integrating hydrology and ecology in catchment science? [J]. Hydrol Processes, 2007, 21 (10): 1385-1389
9 Bracken LJ, Croke J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems [J]. Hydrol Proc, 2007, 21 (13): 1749-1763
10 Kindlmann P, Burel F. Connectivity measures: a review [J]. Landscape Ecol, 2008, 23 (8): 879-890
11 Mcdonough O, Lang M, Hosen J, Palmer M. Surface hydrologic connectivity between Delmarva Bay Wetlands and Nearby Streams along a gradient of agricultural alteration [J]. Wetlands, 2015, 35 (1): 41-53
12 陈敏建,丰华丽, 王立群. 中国分区域生态用水标准研究[R]. 南京: 南京水利科学研究院, 2005 [Chen MJ, Feng LH, Wang LQ. Study on China’s Regional Ecological Water Standard [R]. Nanjing: Nanjing Hydraulic Academy, 2005]
13 Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. The river continuum concept [J]. Can J Fish Aquat Sci, 1980, 37 (1): 130-137
14 Tischendorf L, Fahrig L. On the usage and measurement of landscape connectivity [J]. Oikos, 2000, 90 (1):7-19
15 Malard F, Tockner K, Dole-Olivier MJ, Ward JV. A landscape perspective of surface–subsurface hydrological exchanges in river corridors [J]. Freshwater Biol, 2002, 47 (4): 621-640
16 Western AW, Bl?schl G, Grayson RB. Toward capturing hydrologically significant connectivity in spatial patterns [J]. Water Resour Res, 2001, 37 (1): 83-97
17 Freeman MC, Pringle CM, Jackson CR. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales [J]. J Am Water Resour Assoc, 2007, 43 (1): 5-14
18 Pringle CM. What is hydrologic connectivity and why is it ecologically important? [J]. Hydrol Processes, 2003, 17 (13): 2685-2689
19 Turnbull L, Wainwright J, Brazier RE. A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales [J]. Ecohydrology, 2008, 1 (1): 23-34
20 王柳艳, 许有鹏, 余铭婧. 城镇化对太湖平原河网的影响一以太湖流域武澄锡虞区为例[J]. 长江流域资源与环境, 2013, 21 (2): 151-156 [Wang YL, Xu YP, Yu MJ. Analysis of the urbanization effect on the Taihu plain river network: a case study of Wuchengxiyu region of Taihu basin [J]. Resour Environ Yangtze Basin, 2013, 21 (2): 151-156]
21 长江水利委员会. 维护健康长江促进人水和谐研究报告 [R]. 武汉: 长江水利委员会, 2005 [Yangtez River Water Resources Commission. Report on Protecting the health of Yangtze River and Promoting the Harmony between Humanand River Water [R]. Wuhan: Yangtez River Water Resources Commission, 2005]
22 夏军, 高扬, 左其亭, 刘晓洁, 陈庆美, 窦明. 河湖水系连通特征及其利弊[J]. 地理科学进展, 2012, 31 (1): 26-31 [Xia J, Gao Y, Zuo QT, Liu XJ, Chen QM, Dou M. Characteristics of interconnected river system and its ecological effects on water environment [J]. Progr Geogr, 2012, 31 (1): 26-31]
23 Wang L, Zou C, O’donnell F, Good S, Franz T, Miller GR, Caylor KK, Cable JM, Bond B. Characterizing ecohydrological and biogeochemical connectivity across multiple scales: a new conceptual framework [J]. Ecohydrology, 2012, 5 (2): 221-233
24 Miller GR, Cable JM, Mcdonald AK, Bond B, Franz TE, Wang LX, Gou S, Tyler AP, Zou CB, Scott RL. Understanding ecohydrological connectivity in savannas: a system dynamics modelling approach [J]. Ecohydrology, 2012, 5 (2): 200-220
25 Larsen LG, Choi J, Nungesser M, Harvey JW. Directional connectivity in hydrology and ecology [J]. Ecol Appl, 2012, 22 (8): 2204-2220
26 Reid SC, Lane SN, Montgomery DR, Brookes CJ. Does hydrological connectivity improve modelling of coarse sediment delivery in upland environments? [J]. Geomorphology, 2007, 90 (3): 263-282
27 Lesschen JP, Sshoorl JM, Cammeraat L. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity [J]. Geomorphology, 2009, 109 (3): 174-183
28 Tetzlaff D, Soulsby C, Birkel C. Hydrological connectivity and microbiological fluxes between landscapes and riverscapes: the importance of seasonality [J]. Hydrol Processes, 2010, 24: 1231-1235
29 Jaeger K, Olden J. Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers [J]. River Res Appl, 2012, 28 (10): 1843-1852
30 Schiemer F. Hein T, Reckendorfer W. Ecohydrology, key-concept for large river restoration [J]. Ecohydrol Hydrobiol, 2007, 7(2): 101-111.
31 Lesack LF, Marsh P. River-to-lake connectivities, water renewal, and aquatic habitat diversity in the Mackenzie River Delta [J]. Water Resour Res, 2010, 46 (12): w12504
32 Schoorl J, Veldkamp A. Linking land use and landscape process modelling: a case study for the Alora region (South Spain) [J]. Agricult Ecosyst Environ, 2001, 85 (1): 281-292
33 Karim F, Kinsey-Henderson A, Wallace J, Arthington AH, Pearson RG. Modelling wetland connectivity during overbank flooding in a tropical floodplain in north Queensland, Australia [J]. Hydrol Processes, 2012, 26 (18): 2710-2723
34 Lane S, Reaney S, Heathwaite AL. Representation of landscape hydrological connectivity using a topographically driven surface flow index [J]. Water Resour Res, 2009, 45 (8): w08423
35 Goodwin BJ. Is landscape connectivity a dependent or independent variable? [J]. Landscape Ecol, 2003, 18 (7): 687-699
36 Meerkerk AL, Van Wesemael B, Bellin N.. Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments [J]. Hydrol Processes, 2009, 23 (19): 2792-2803
37 孟慧芳, 许有鹏, 徐光来, 张兴奇. 平原河网区河流连通性评价研究[J]. 长江流域资源与环境, 2014, 23 (5): 626-631 [Meng HF, Xu YP, Xu GL, Zhang XQ. Study on river connectivity evaluation in plain river network area [J]. Resour Environ Yangtze Basin, 2014, 23 (5): 626-631]
38 Poulter B, Goodalli JL, Halpin PN. Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise [J]. J Hydrol, 2008, 357 (3): 207-217
39 闫俊华, 周国逸, 申卫军. 用灰色关联法分析森林生态系统植被状况对地表径流系数的影响[J]. 应用与环境生物学报, 2000, 6 (3): 197-20 [Yan JH, Zhou GY, Shen WJ. Grey correlation analysis of the effect of vegetation status on surface runoff coefficient of forest ecosystems [J]. Chin J Appl Environ Biol, 2000, 6 (3): 197-200]
40 Cui B, Wang C, Tao W, You ZY. River channel network design for drought and flood control: a case study of Xiaoqinghe River basin, Jinan City, China [J]. J Environ Manage, 2009, 90 (11): 3675-3686
41 Phillips R, Spence C, Pomeroy J. Connectivity and runoff dynamics in heterogeneous basins [J]. Hydrol Processes, 2011, 25 (19): 3061-3075
42 赵进勇, 董哲仁, 翟正丽, 孙东亚. 基于图论的河道-滩区系统连通性评价方法[J]. 水利学报, 2011, 42 (5): 537-543 [Zhao JY, Dong ZR, Zhai ZL, Sun YD. Evaluation method for river floodplain system connectivity based on graph theory [J]. J Hydr Eng, 2011, 42 (5): 537-543]
43 邵玉龙, 许有鹏, 马爽爽. 太湖流域城市化发展下水系结构与河网连通变化分析一以苏州市中心区为例[J]. 长江流域资源与环境, 2012, 21 (10): 1167-1172 [ Shao YL, Xu YP, Ma SS. Change of river structure and stream network connectivity in the Taihu Lake basin under the urbanization development: a case study in urban Suzhou[J]. Resour Environ Yangtze Basin, 2012, 21 (10): 1167-1172]
44 高婷, 李翀, 廖文根. 二元驱动的河湖历史演变及其启示[J]. 人民长江, 2012, 43 (1): 12-17 [Gao T, Li C, Liao WG. Dural Driver of the historical evolutionof river and lake and its revelation [J]. Yangtze River, 2012, 43 (1): 12-17]
45 沈洁. 上海浦东新区城市化进程对水系结构、连通性及其调蓄能力的影响研究[D]. 上海: 华东师范大学, 2015 [Shen J. Study on the impact of urbanization on stream structure, river network connectivity and storage capacity in Pudong New Area, Shanghai [B]. Shanghai: East China Normal University, 2015]
46 李原园, 郦建强, 李宗礼, 刘晓洁, 田英, 李爱花. 河湖水系连通研究的若干问题与挑战[J]. 资源科学, 2011, 33 (3): 386-391 [ Li YY, Li JQ, Li ZL, Liu XJ, Tian Y, Li AH. Issues and challenges for the study of the interconnected river system network [J]. Resour Sci, 2011, 33 (3): 386-391]
47 李宗礼, 李原园, 王中根, 郝秀平, 刘晓洁. 河湖水系连通研究:概念框架[J]. 自然资源学报, 2011, 26 (3): 513-522 [Li ZL, Li YY, Wang ZG, Hao XP, Liu XJ. Research on interconnected river system network: conceptual framework [J]. J Nat Resour, 2011, 26 (3): 513-522]
48 左其亭, 崔国韬. 河湖水系连通理论体系框架研究[J]. 水电能源科学, 2012, 30 (1): 1-5 [Zuo QT, Cui GT. Study on theoretical system and framework of interconnected river system network [J]. Water Resour Power, 2012, 30 (1): 1-5]
49 崔国韬, 左其亭, 李宗礼, 窦明. 河湖水系连通功能及适应性分析[J]. 水电能源科学, 2012, 30 (2): 1-5 [Cui GT, Zuo QT, Li ZL, Dou M. Analysis of function and adaptability for interconnected river system network [J]. Water Resour Power, 2012, 30 (2): 1-5]
50 冯顺新, 李海英, 李翀, 王俊娜. 河湖水系连通影响评价指标体系研究I——指标体系及评价方法[J]. 中国水利水电科学研究院学报, 2014, 12 (4): 386-393 [Feng SX, Li HY, Li C, Wang JN. Study on the impact evaluation indicator system of River and Lake System InterconnectionI: impact evaluation indicator system and evaluation method [J]. J China Inst Water Resour Hydropower Res, 2014, 12 (4): 386-393]
51 杨凯, 袁雯, 赵军, 许世远. 感潮河网地区水系结构特征及城市化响应[J]. 地理学报, 2004, 59 (4): 557-564 [Yang K, Yuan W, Zhao J, Xu SY. Stream structure characteristics and its urbanization responses to tidal river system [J]. Acta Geogr Sin, 2004, 59 (4): 557-564]
52 袁雯, 杨凯, 唐敏, 徐启新. 平原河网地区河流结构特征及其对调蓄能力的影响[J]. 地理研究, 2005, 24 (5): 718-724 [Yuan W, Yang K, Tang M, Xu QX. Stream structure characteristics and their impact on storage and flood control capacity in the urbanized plain river network [J]. Geogr Res, 2005, 24 (5): 718-724]
53 陈茂满. 洪泽湖蓄泄关系与淮河中下游防洪[J]. 水规划与设计, 2004 (2): 27-47 [Chen MM. The storage-discharge relationship of Hongze Lake and flood control in the middle and lower reaches of the Huaihe River [J]. Water Planning Design, 2004 (2): 27-47]
54 施勇, 栾震宇, 陈炼钢, 金秋. 长江中下游江湖蓄泄关系实时评估数值模拟[J]. 水科学进展, 2010, 21 (6): 840-846 [Shi Y, Luan ZY, Chen LG, Jin Q. On the real-time evaluation of the storage-discharge relationship in the middle and lower reaches of the Yangtze River [J]. Adv Water Sci, 2010, 21 (6): 840-846]
55 Merenlender A, Matella M. Maintaining and restoring hydrologic habitat connectivity in mediterranean streams: an integrated modeling framework [J]. Hydrobiologia, 2013, 719 (1): 509-525
56 Amoros C, Bomette G. Connectivity and biocomplexity in waterbodies of riverine floodplains [J]. Freshwater Biol, 2002, 47 (4): 761-776
57 Thoms MC, Southwell M, Mcginness HM. Floodplain–river ecosystems: fragmentation and water resources development [J]. Geomorphology, 2005, 71 (1-2): 126-138
58 赵贤豹. 湿地生态系统水文连接度研究[M]. 南京: 南京水利科学研究院, 2008 [Zhao XB. Study on Wetland Ecosystems Hydrological Connectiity [M]. Nanjing: Nanjing Hydraulic Research Institute, 2008 ]
59 Henry CP, Amoros C. Restoration ecology of riverine wetlands: I. A scientific base [J]. Environ Manage, 1995, 19 (6): 891-902
60 崔丽娟, 李伟, 赵欣胜, 张岩, 张曼胤 王义飞, 高常军, 马琼芳. 北京西卓家营湿地沉水植物群落组成与水环境因子的关系[J]. 林业科学, 2012, 48 (6): 18-23 [Cui LJ, Li W, Zhao XS, Zhang Y, Zhang MY, Wang YF, Gao CJ, Ma QF. Relationships between submerged plants community composition and hydro-environmental factors in Xizhuojiaying wetland, Beijing [J]. Sci Silv Sin, 2012, 48 (6): 18-23]
61 魏圆云, 崔丽娟, 张曼胤, 康晓明, 马牧源, 赵新胜. 基于生态系统服务价值的湿地恢复工程效益分析——以北京市延庆县蔡家河为例[J]. 生态学报, 2015, 35 (13): 4287-4294 [Wei YY, Cui LJ, Zhang MY, Kang XM, Ma MY, Zhao XS. Benefit analysis of wetland restoration project based on ecosystem service value: a case study of Caijia Rvier, Bejing [J]. Acta Ecol Sin, 2015, 35 (13): 4287-4294]
62 Oxley T, Mcintosh BS, Winder N, Mulligan M, Engelen G.. Integrated modelling and decision-support tools: a Mediterranean example [J]. Environ Modelling Software, 2004, 19 (11): 999-1010

相似文献/References:

[1]袁一斌,毛萍,昝晓辉,等.农业非点源污染SWAT模型研究态势及研究前沿知识图谱[J].应用与环境生物学报,2018,24(05):1050.[doi:10.19675/j.cnki.1006-687x.2017.12002]
 YUAN Yibin#,MAO Ping#,ZAN Xiaohui,et al.Mapping the trends and knowledge of research using the SWAT model of agricultural non-point source pollution[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):1050.[doi:10.19675/j.cnki.1006-687x.2017.12002]

更新日期/Last Update: 2017-06-25