|本期目录/Table of Contents|

[1]高艳娜,戚志伟,仲启铖,等.长江口芦苇湿地土壤酶活性对长期模拟升温的响应[J].应用与环境生物学报,2017,23(03):535-541.[doi:2016.05043]
 GAO Yanna,QI Zhiwei,ZHONG Qicheng,et al.Responses of soil enzymatic activities to long-term simulated warming in Yangtze estuarine wetlands with Phragmites australis[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):535-541.[doi:2016.05043]
点击复制

长江口芦苇湿地土壤酶活性对长期模拟升温的响应()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年03期
页码:
535-541
栏目:
研究论文
出版日期:
2017-06-25

文章信息/Info

Title:
Responses of soil enzymatic activities to long-term simulated warming in Yangtze estuarine wetlands with Phragmites australis
作者:
高艳娜戚志伟仲启铖李艳姜楠王开运李沙沙樊同
1华东师范大学生态与环境科学学院 上海 200241 2上海市城市化生态过程与生态恢复重点实验室 上海 200241 3上海市园林科学规划研究院 上海 200232
Author(s):
GAO Yanna QI Zhiwei ZHONG Qicheng LI Yan JIANG Nan WANG Kaiyun LI Shasha & FAN Tong
1School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China 2Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai 200241, China 3Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
关键词:
土壤酶活性长期模拟升温季节变化土壤深度长江口芦苇湿地
Keywords:
soil enzyme activitiy long-term simulated warming seasonal change soil depth Yangtze estuarine Phragmites australis wetlands
分类号:
S154.1 (251)
DOI:
2016.05043
摘要:
为促进气候变暖情景下长江口芦苇湿地可持续管理,以长江口崇明东滩芦苇湿地为对象,采用开顶室生长箱(Open top chamber,OTC)原位模拟大气温度升高,在升温的第8年研究芦苇湿地0-10 cm、10-20 cm土层5种重要土壤酶(蔗糖酶、脲酶、酸性磷酸酶、中性磷酸酶和碱性磷酸酶)活性对长期模拟升温的响应. 结果显示:长达8年的连续升温显著提高了0-20 cm土层的土壤酶活性,0-10 cm土层蔗糖酶、脲酶、酸性磷酸酶、中性磷酸酶和碱性磷酸酶活性分别增加71.9%、84.7%、41.8%、105.7%和18.9%,10-20 cm土层分别提高38.0%、92.6%、46.2%、87.7%和34.0%. 升温与季节、土壤深度的交互作用对土壤酶活性影响显著. 春季(4月)0-10 cm土层蔗糖酶活性显著提高,但这一土层酸性磷酸酶、中性磷酸酶和碱性磷酸酶活性显著降低;夏季(7月)各土层的蔗糖酶、脲酶和中性磷酸酶活性显著提高;秋季(10月)各土层的5种土壤酶活性也显著提高;冬季(12月)各土层的5种土壤酶活性没有显著变化. 相关分析表明,土壤蔗糖酶、中性磷酸酶与土壤温度呈显著正相关,5种土壤酶活性均与土壤有机碳呈显著正相关,土壤蔗糖酶、酸性磷酸酶和碱性磷酸酶与总磷也呈显著正相关. 综上表明,长期模拟升温能显著地改变长江口崇明东滩芦苇湿地土壤酶活性,进而可能影响这一地区的生态系统养分循环. (图7 表3 参34)
Abstract:
Soil enzymes are an important part of a wetland ecosystem. In this study, we evaluated the responses of soil enzymatic activities to long-term warming in relation to soil carbon, nitrogen, and phosphorus; this model has an important meaning in Yangtze Estuary Wetlands with Phragmites australis sustainable management under the conditions of climate warming. An in situ simulated warming experiment was conducted on the Eastern Chongming wetland with P. australis in the Yangtze Estuary; open-top chambers (OTCs) were applied to simulate climate warming. In the eighth year of warming, we studied the responses of several important soil enzymatic activities (invertase, urease, acid phosphatase, neutral phosphatase, and alkaline phosphatase) to long-term warming at soil depths of 0–10 and 10–20 cm. After eight years of continuous warming, the simulated warming significantly increased soil enzymatic activities at soil depths of 0–20 cm. The activities of invertase, urease, acid phosphatase, neutral phosphatase, and alkaline phosphatase increased by 71.9%, 84.7%, 41.8%, 105.7%, and 18.9%, respectively, at soil depths of 0–10 cm and increased by 38.0%, 92.6%, 46.2%, 87.7%, 34.0%, respectively, at soil depths of 10–20 cm. The effects of interaction of the warming, season, and soil depth on soil enzymatic activities were significant. The long-term simulated warming significantly improved spring (April) invertase activity at the 0-10 cm soil depth but significantly reduced soil acid phosphatase, neutral phosphatase, and alkaline phosphatase activities. The simulated warming significantly increased soil invertase, urease, and neutral phosphatase activities in the summer (July) at soil depths of 0–20 cm. In the autumn (October), five soil enzymatic activities also significantly increased at two depths, but the long-term warming had no significant effect on five soil enzymatic activities in winter (December). Correlation analysis revealed that invertase and neutral phosphatase activities significantly positively correlated with soil temperature; the activities of five soil enzymes showed a significant positive correlation with soil organic carbon content; and invertase, acid phosphatase, and alkaline phosphatase activities significantly positively correlated with soil total phosphorus content. The long-term simulated warming significantly changed soil enzymatic activities; this alteration could have important effects on nutrient cycling in reed wetlands on Eastern Chongming Island in the Yangtze Estuary.

参考文献/References:

1 IPCC. Climate change and water 2008 [C]//Bates BC, Kundzewicz ZW, Wu S, Palutikof JP. IPCC Technical Paper. VI. IPCC Secretariat, Geneva, 2008
2 Kirschbaum MUF. The temperature dependence of organic-matter decomposition-still a topic of debate [J]. Soil Biol Biochem, 2006, 38 (9): 2510-2518
3 杨万勤, 王开运. 森林土壤酶的研究进展[J]. 林业科学, 2004, 40 (2): 153-159 [Yang WQ, Wang KY. Advances in forest soil enzymology. Sci Silv Sin, 2004 , 40 (2): 152-159]
4 Allison SD, Treseder KK. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils [J]. Global Change Biol, 2008, 14 (12): 2898-2909
5 Sardans J, Penuelas J, Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland [J]. Appl Soil Biol, 2008, 39 (2): 223-235
6 Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates [M]//Soil Enzymology. Springer Berlin Heidelberg, 2011: 245-258
7 Steinweg JM, Dukes JS, Wallenstein MD. Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data [J]. Soil Biol Biochem, 2012, 55 (6): 85-92
8 Zhang XZ, Shen ZX, Fu G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau [J]. Appl Soil Ecol, 2015, 87 (87): 32-38
9 Liu Y, Li M, Zheng JW, Li L, Zhang X. Short-term responses of microbial community and functioning to experimental CO2 enrichment and warming in a chinese paddy field [J]. Soil Biol Biochem, 2014, 77(7): 58-68
10 徐振锋, 唐正, 万川, 熊沛, 曹刚, 刘庆. 模拟增温对川西亚高山两类针叶林土壤酶活性的影响[J]. 应用生态学报, 2010, 21 (11): 2727- 2733 [Xu ZF, Tang Z, Wan C, Xiong P, Cao G, Liu Q. Effects of simulated warming on soil enzyme activities in two subalpine soniferous forests in west Sichuan. Chin J Appl Ecol, 2010, 21 (11): 2727-2733]
11 McDaniel MD, Kaye JP, Kaye MW. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest [J]. Soil Biol Biochem, 2013, 56 (56): 90-98
12 杨玉莲. 模拟增温对高山森林土壤微生物和酶活性的影响[D]. 雅安: 四川农业大学, 2012 [Yang YL. Effects of simulated warming on soil microbial and enzyme activity in the Alpine Forests [D]. Ya’an: Sichuan Agricultural University, 2012]
13 Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006, 440 (7081): 165-173
14 Paz-Ferreiro J, Trasar-Cepeda C, Del Carmen Ieiros M, Seoane S, Gil-Sotres F. lntra-annual variation in biochemical properties and the biochemical equilibrium of different grassland soils under contrasting management and climate [J]. Biol Fertil Soi1s, 2011, 47(6): 633-645
15 Mcleod E, Chmura GL, Bouillon S, Salm R, Bj?rk M. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Front Ecol Environ, 2011, 9 (10): 552-560
16 王开运, 张利权. 长江口生态系统修复技术和决策管理[M]. 北京: 科学出版社, 2013 [Wang KY, Zhang LQ. Yangtze River Estuary Ecosystem Restoration Technology and Decision Management [M]. Beijing: Science Press, 2013]
17 Venkareswaran K, Natarajan R. Distribution of phosphatase in sediments of Porto Novo [J]. Indian J Mar Sci, 1983, 12: 231- 242
18 万忠梅, 宋长春. 小叶章湿地土壤酶活性分布特征及其与活性有机碳表征指标的关系[J]. 湿地科学, 2008, 6 (2): 249-257 [Wan ZM, Song CC. Wetland science vertical dynamics of soil enzyme activities and its relationship with active organic carbon indicators in Calamagrostis angustifolia wetand [J]. Wetl Sci, 2008, 6 (2): 249-257
19 Mclatchey GP, Reddy KR. Regulation of organic matter decomposition and nutrient release in a wetland soil [J]. J Environ Qual, 1998, 27 (5): 1268-1274
20 王红丽, 肖春玲, 李朝君, 李艳丽, 张文佺, 付小花, 乐毅全, 王磊. 崇明东滩湿地土壤有机碳空间分异特征及影响因素[J]. 农业环境科学学报, 2009, 28 (7): 1522-1528 [Wang HL, Xiao CL, Li CJ, Li YL, Zhang WQ, Fu XH, Le YQ, Wang L. Spatial variability of organic carbon in the soil of wetlands in Chongming Dongtan and its influential factors [J]. J Agro-Environ Sci, 2009, 28 (7): 1522-1528]
21 Wright AL, Reddy KR. Phosphorus loading effects on extracellular enzyme activity in everglades wetland soils [J]. Soil Sci Soc Am J, 2001, 65 (2): 588-599
22 Allison SD, McGuire KL, Treseder KK. Resistance of microbial and soil properties to warming treatment seven years after boreal fire [J]. Soil Biol Biochem, 2010, 42 (10): 1872-1878
23 Schimel JP, Weintraub MN. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model [J]. Soil Biol Biochem, 2003, 35 (4): 549-563
24 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1987 [Guan SY. Soil Enzyme and Its Research Methods [M]. Beijing: China Agricultural Press, 1987]
25 谭波, 吴福忠, 杨万勤, 余胜, 杨玉莲, 王奥. 冻融末期川西亚高山森林土壤水解酶活性特征[J]. 应用生态学报, 2011, 22 (5): 1162-1168 [Tan B, Wu FZ Yang WQ, Yu S, Yang YL, Wang A. Soil hydrolase characteristics in late soil soil-thawing period in subalpine/alpine forests of west Sichuan [J]. Chin J Appl Ecol, 2011, 22 (5): 1162-1168 ]
26 付杰, 赵丹, 蒋敏芝, 李秀艳. 崇明西滩芦苇湿地土壤酶活性特征的研究[J]. 安徽农业学, 2014, 42 (7): 1969-1972 [Fu J, Zhao D, Jiang MZ, Li XY. Soil enzyme activities in Chongming Xitan dominated with Phragmites australis [J]. Anhui Agric Sci, 2014, 42 (7): 1969-1972]
27 肖玲, 王开运, 张远彬. CO 2浓度和温度升高对红桦根际微生物的影响[J]. 生态学报, 2006, 26 (6): 1701-1708 [Xiao L, Wang KY, Zhang YB. Effects of elevated atmospheric CO2 concentration and increased temperature on Betula albosinensis rhizospheric microbe [J]. Ecol Sin, 2006, 26 (6): 1701-1708]
28 王学娟, 周玉梅, 王秀秀, 江肖洁, 韩士杰. 长白山苔原生态系统土壤酶活性及微生物生物量对增温的响应[J]. 土壤学报, 2014, 50 (1): 166-175 [Wang XJ, Zhou YM, Wang XX, Jiang XJ, Han SJ. Responses of soil enzymes in activity and soil microbes in biomass to warming in tundra ecosystem on Changbai Mountains [J]. Acta Pedol Sin, 2014, 50 (1): 166-175
29 冯瑞芳. 高寒森林土壤有机层酶活性动态及其对模拟气候变化的响应[D]. 雅安: 四川农业大学, 2007 [Feng RF. Seasonal dynamics on enzyme activities in soil organic layer and their responses to stimulated climate change in the high-frigid forest ecosystem [D]. Ya’an: Sichuan Agricultural University, 2007]
30 刘琳, 朱霞, 孙庚, 罗鹏, 王蓓. 模拟增温与施肥对高寒草甸土壤酶活性的影响[J]. 草业科学, 2011, 28 (8): 1405-1410 [Liu L, Zhu X, Sun G, Luo P, Wang B. Effects of simulated warming and fertilization on activities of soil enzymes in alpine meadow [J]. Pratacult Sci, 2011, 28 (8): 1405-1410]
31 杨文英, 邵学新, 吴明, 刘芸. 短期模拟增温对杭州湾滨海湿地芦苇群落土壤呼吸速率的影响[J]. 西南大学学报, 2012, 34 (3): 83-89 [Yang WY, Shao XM, Wu M, Liu Y. Effects of simulated short-term elevated temperature on soil respiration rate in the reed community in Hangzhou Bay wetland [J]. J Southwest Univ, 2012, 34 (3): 83-89]
32 Peter WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP. Responses of trace gas fluxes and N availability to experimental elevated soil temperature [J]. Ecol Appl, 1994, 4 (3): 617-625
33 Zhou XQ, Chen CR, Wang YF, Xu Z, Han H. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland [J]. Sci Total Environ, 2013, 444 (2): 552-558
34 Zhang WJ, Xu Q, Wang XK, Bian X. Impacts of experimental atmospheric warming on soil microbial community structure in a tallgrass prairie [J]. Acta Ecol Sin, 2004, 24 (8): 1742-1747

相似文献/References:

[1]杨惠芳,王保军,林力,等.单甲脒农药对土壤微生物种群和土壤酶活性的影响[J].应用与环境生物学报,1996,2(01):58.
 Yang Huifang,Wang Baojun,Lin Li,et al.EFFECT OF MONOFORMAMIDINE PESTICIDE ON THE MICROBIAL POPULATION AND ENZYMATIC ACTIVITY IN SOIL[J].Chinese Journal of Applied & Environmental Biology,1996,2(03):58.
[2]杨敬天,苏智先,胡进耀,等.珙桐林土壤有机质与酶活性的通径分析[J].应用与环境生物学报,2010,16(02):164.[doi:10.3724/SP.J.1145.2010.00164]
 YANG Jingtian,SU Zhixian,HU Jinyao,et al.Path Analysis for Soil Organic Matters and Enzyme Activities of Davidia involucrate Virgin Forest[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):164.[doi:10.3724/SP.J.1145.2010.00164]
[3]王启兰,王长庭,刘伟,等.江河源区人工草地植物群落和土壤酶活性变化[J].应用与环境生物学报,2010,16(05):662.[doi:10.3724/SP.J.1145.2010.00662]
 WANG Qilan,WANG Changting,LIU Wei,et al.Changes in Plant Communities and Soil Enzyme Activities of Artificial Grasslands in Headwater Areas of the Yangtze and Yellow Rivers[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):662.[doi:10.3724/SP.J.1145.2010.00662]
[4]王正贵,封超年,郭文善,等.除草剂异丙隆对麦田土壤微生物数量及酶活性的影响[J].应用与环境生物学报,2010,16(05):688.[doi:10.3724/SP.J.1145.2010.00688]
 WANG Zhenggui,FENG Chaonian,GUO Wenshan,et al.Effects of Isoproturon on Soil Microbial Populations and Enzyme Activities[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):688.[doi:10.3724/SP.J.1145.2010.00688]
[5]谢英荷,李廷亮,洪坚平,等.不同水氮调控措施对旱地冬小麦产量形成及酶活性的影响[J].应用与环境生物学报,2013,19(03):399.[doi:10.3724/SP.J.1145.2013.00399]
 XIE Yinghe,LI Tingliang,HONG Jianping,et al.Effects of Different Water and Nitrogen Control Schemes on Yield of Winter Wheat and Soil Enzyme Activity in Dryland[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):399.[doi:10.3724/SP.J.1145.2013.00399]
[6]常文智,马鸣超,陈慧君,等.胶质类芽胞杆菌对花生生长和土壤微生物学性状的影响[J].应用与环境生物学报,2014,20(02):185.[doi:10.3724/SP.J.1145.2014.00185]
 CHANG Wenzhi,MA Mingchao,CHEN Huijun,et al.Effects of Paenibacillus mucilaginosus on peanut growth and soil microbiological characteristics[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):185.[doi:10.3724/SP.J.1145.2014.00185]
[7]刘星,王娜,赵博,等.改变碳输入对太岳山油松林土壤酶活性的影响[J].应用与环境生物学报,2014,20(04):655.[doi:10.3724/SP.J.1145.2013.12021]
 LIU Xing,WANG Na,ZHAO Bo,et al.Effects of carbon input changes on soil enzyme activities in a Pinus tabulaeformis forest at the Taiyue Mountain[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):655.[doi:10.3724/SP.J.1145.2013.12021]
[8]李敬伟,湛方栋,何永美,等. 云南会泽铅锌矿区土壤理化与生物学性质[J].应用与环境生物学报,2014,20(05):906.[doi:10.3724/SP.J.1145.2014.01047]
 LI Jingwei,ZHAN Fangdong,HE Yongmei,et al. Physicochemical and biological properties of soils from Huize lead-zinc mining area of Yunnan[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):906.[doi:10.3724/SP.J.1145.2014.01047]
[9]栗 丽 李廷亮 孟会生 谢英荷 洪坚平**.菌剂与肥料配施对矿区复垦土壤养分及微生物学特性的影响[J].应用与环境生物学报,2016,22(06):1156.[doi:10.3724/SP.J.1145.2016.06006]
 LI Li,LI Tingliang,MENG Huisheng,et al.Effects of combined application of microbial agents and fertilizers on soil nutrients and microbial characteristics in reclaimed soil[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):1156.[doi:10.3724/SP.J.1145.2016.06006]
[10]何朋俊,李星月,王谢,等.川中丘陵柏木低效林开窗补阔初期土壤养分和酶活性变化[J].应用与环境生物学报,2017,23(04):693.[doi: 10.3724/SP.J.1145.2016.12052]
 HE Pengjun,LI Xingyue,WANG Xie,et al.Microbial diversity in Yubei Oil field determined by high-throughput sequencing[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):693.[doi: 10.3724/SP.J.1145.2016.12052]

更新日期/Last Update: 2017-06-25