|本期目录/Table of Contents|

[1]程虎,许文年,向瀚宇,等.不同修复年限植被混凝土基材有机碳氧化稳定性特征[J].应用与环境生物学报,2019,25(02):232-238.[doi:10.19675/j.cnki.1006-687x.2018.12040]
 CHENG Hu,XU Wennian,XIANG Hanyu,et al.Characteristics of soil oxidizable stable organic carbon in different restoration years for substrate of eco-restoration of vegetation concrete[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):232-238.[doi:10.19675/j.cnki.1006-687x.2018.12040]
点击复制

不同修复年限植被混凝土基材有机碳氧化稳定性特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
232-238
栏目:
研究论文
出版日期:
2019-04-25

文章信息/Info

Title:
Characteristics of soil oxidizable stable organic carbon in different restoration years for substrate of eco-restoration of vegetation concrete
作者:
程虎许文年向瀚宇罗婷夏栋
1三峡大学生物与制药学院 宜昌 443002 2三峡大学土木与建筑学院 宜昌 443002 3三峡大学水利与环境学院 宜昌 443002
Author(s):
CHENG Hu1 XU Wennian1 2 XIANG Hanyu1 LUO Ting1 & XIA Dong3**
1 College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China 2 College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, China 3 College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
关键词:
生态修复植被混凝土基材有机碳氧化稳定性氧化有机碳组分
Keywords:
ecological restoration vegetation concrete substrate of eco-restoration oxidizable stable organic carbon oxidizable organic carbon fraction
分类号:
S153.621
DOI:
10.19675/j.cnki.1006-687x.2018.12040
摘要:
为了解基材质量的变化,选择修复0、3、6、9、12和15年的基材作为研究对象,分析其微生物量碳(MBC)、总有机碳(TOC)及其氧化有机碳组分(F1:极易氧化有机碳;F2:容易氧化有机碳;F3:较易氧化有机碳;F4:难氧化有机碳)含量随修复年限的动态变化特征. 结果显示:(1)基材TOC含量在修复早期下降显著,随年限增加略有升高,其后呈下降趋势,最后趋于稳定. (2)修复9年的基材氧化有机碳组分F1、F2和MBC显著大于12年和15年;并且从修复9年至15年,F1、F2和F3组分占TOC的比例分别从32.14%、38.43%和20.07%下降至24.34%、22.59%和18.71%,F4组分由9.99%增加至32.36%. (3)相关性分析结果表明TOC与F1、F2、F3和 F4之间没有显著的相关性,而易氧化碳(ROC)与F1、F2和F3之间具有显著的正相关性(P < 0.05);MBC与ROC、F1和F2都具有显著的正相关性(P < 0.05). 本研究表明随着修复年限增加,基材有机碳的内部循环会受到阻碍,基材氧化有机碳组分可有效反映基材质量变化. (图4 表2 参44)
Abstract:
Studying the characteristics of soil oxidizable stable organic carbon in the substrate of eco-restoration of vegetation concrete from different restoration years is of great significance to understand the substrate quality over time. This study was designed to investigate the?pH, moisture content, microbial biomass carbon (MBC), total organic carbon (TOC), and characteristics of oxidizable organic carbon fraction variations in different restoration years (0, 3, 6, 9, 12 and 15 years) for substrate of eco-restoration of vegetation concrete. The characteristics of oxidizable organic carbon fraction were categorized as F1: very labile fraction of oxidizable organic; F2: labile organic carbon; F3: less liable fraction of oxidizable organic carbon; and F4: non-labile fraction of oxidizable organic carbon. The results showed that: 1) The TOC of the substrate decreased in the early restoration stage, followed by a reduction, a subsequent increase and an equilibrium state with increasing restoration age. 2) The TOC showed no significant difference between restorations of 9 and 15 years, while the F1, F2, and soil?MBC were significantly higher for restorations of 9 years than those for restorations of 12 and 15 years. Compared to the restorations of 15 years, the proportion of F1, F2, and F3 in TOC for restorations of 9 years decreased from 32.14%, 38.43%, and 20.07% to 24.34%, 22.59%, and 18.71%, respectively, while that of F4 increased from 9.99% to 32.36%. 3) The correlation analysis indicated that TOC was not related to F1, F2, F3, and F4, while the readily oxidizable carbon (ROC) had a significant positive relation to F1, F2, and F3 (P < 0.05). The MBC had a significant positive correlation with ROC, F1, and F2 (P < 0.05). The study showed that the internal circulation of the substrate organic carbon was increasingly hindered by repair aging. The oxidized organic carbon fractions of the substrate can adequately reflect the change of substrate quality.

参考文献/References:

1. 夏振尧, 许文年, 王乐华. 植被混凝土生态护坡基材初期强度特性研究[J]. 岩土力学, 2011, 32 (6): 1719-1724 [Xia ZY, XU WN, Wang LH. Research on characteristics of early strength of ecological slope-protected base material of vegetation-growing concrete [J]. Rock Soil Mech, 2011, 32 (6): 1719-1724]
2. 丁瑜, 胡文静, 夏振尧, 李博, 姚小月, 许文年. 生态护坡生境基材土壤肥力动态变化研究[J]. 水生态学杂志, 2017, 38 (2): 31-37 [Ding Y, Hu WJ, Xia ZY, Li B, Yao XY, Xu WN. Soil fertility dynamics of substrate used for ecological slope protection [J]. J Hydroecol, 2017, 38 (2): 31-37]
3. 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000 [Huang CY. Agrology [M]. Beijing: China Agriculture Press, 2000]
4. Reeves DW. The role of soil organic matter in maintaining soil quality in continuous cropping systems [J]. Soil Tillage Res, 1997, 43 (1-2): 131-167
5. Fageria NK. Role of soil organic matter in maintaining sustainability of cropping systems [J]. Commun Soil Sci Plant Anal, 2012, 43 (16): 2063-2113
6. 赵鑫, 宇万太, 李建东, 姜子绍. 不同经营管理条件下土壤有机碳及其组分研究进展[J]. 应用生态学报, 2006, 17 (11): 2203-2209 [Zhao X, Yu WT, Li JD, Jiang ZS. Research advances in soil organic carbon and its fractions under different management patterns [J]. Chin J Appl Ecol, 2006, 17 (11): 2203-2209]
7. Mvon L, Kogelknabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms [J]. Soil Biol Biochem, 2007, 39 (9): 2183-2207
8. 蒲玉琳, 叶春, 张世熔, 龙高飞, 杨丽蓉, 贾永霞, 徐小逊, 李云. 若尔盖沙化草地不同生态恢复模式土壤活性有机碳及碳库管理指数变化[J]. 生态学报, 2017, 37 (2): 367-377 [Pu YL, Ye C, Zhang SR, Long GF, Yang LR, Jia YX, Xu XS, Li Y. Effects of different ecological restoration patterns on labile organic carbon and carbon pool management index of desertification grassland soil in Zoige [J]. Acta Ecol Sin, 2017, 37 (2): 367-377]
9. Liu MY, Chang QR, Qi YB, Liu J, Tao C. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China [J]. Catena, 2014, 115 (3): 19-28
10. Bremer E, Janzen HH, Johnston AM. Sensitivity of total, light fraction and mineralizable organic matter to management practices in a Lethbridge soil [J]. Can J Soil Sci, 1994, 74 (2): 131-138
11. 胡慧蓉, 马焕成, 罗承德, 胡庭兴. 森林土壤有机碳分组及其测定方法[J]. 土壤通报, 2010, 41 (4): 1018-1024 [Hu HR, Ma HC, Luo CD, Hu TX. Forest soil organic carbon fraction and its measure methods [J]. Chin J Soil Sci, 2010, 41 (4): 1018-1024]
12. Christensen BT. Physical fractionation of soil and structural and functional complexity in organic matter turnover [J]. Eur J Soil Sci, 2001, 52 (3): 345-353
13. Barreto PAB, Gama-Rodrigues EF, Gama-Rodrigues AC, Fontes AG, Polidoro JC, Moco MK, Machado RCR, Baligar VC. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil [J]. Agrofor Syst, 2011, 81 (3): 213-220
14. 张春霞, 郝明德, 魏孝荣, 王旭刚. 黑垆土长期轮作培肥土壤有机质氧化稳定性的研究[J]. 中国土壤与肥料, 2004 (3): 10-12 [Zhang CX, Hao MD, Wei XR, Wang XG. Study of long-term rotation and fertilizations on black loessal soil on the oxidation stability of soil organic matter [J]. Soils Fertil, 2004 (3): 10-12]
15. CHAN, KY, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys [J]. Soil Sci, 2001, 166 (1): 61-67
16. Zinn YL, Dvs R, Jeda S. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil [J]. For Ecol Manage, 2002, 166 (1-3): 285-294
17. 王梦雅, 符云鹏, 黄婷婷, 赵亚鹏, 贾辉, 贾辉, 何甜甜, 王静, 赵晓军. 等碳量添加不同有机物料对土壤有机碳组分及土壤呼吸的影响[J]. 中国烟草学报, 2018, 24 (2): 65-73 [Wang MY, Fu YP, Huang TT, Zhao YP, Jia H, He TT, Wang J, Zhao XJ. Effects of organic material application on organic carbon in and respiration of soil [J]. Acta Tabacaria Sin, 2018, 24 (2): 65-73]
18. Majumder B, Mandal B, Bandyopadhyay PK, Chaudhury J. Soil organic carbon pools and productivity relationships for a 34 year old rice–wheat–jute agroecosystem under different fertilizer treatments [J]. Plant Soil, 2007, 297 (1): 53-67
19. Majumder B, Mandal B, Bandyopadhyay PK. Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice–berseem agroecosystem [J]. Biol Fertil Soils, 2008, 44 (3): 451-461
20. 杨玉盛, 何宗明, 林光耀, 罗学升. 不同治理模式对严重退化红壤抗蚀性影响的研究[J]. 水土保持学报, 1996 (2): 32-37 [Yang YS, He ZM, Ling GY, Luo XS. Study on the effects of different governance models on the corrosion resistance of severely degraded red soil [J]. J Soil Water Conserv, 1996 (2): 32-37]
21. 赵冰琴, 夏振尧, 许文年, 杨森, 夏栋, 王泽光. 工程扰动区边坡生态修复技术研究综述[J]. 水利水电技术, 2017, 48 (2): 130-137 [Zhao BQ, Xia ZY, Xu WN, Yang S, Xia D, Wang ZG. Review on research of slope eco-restoration technique for engineering disturbed area [J]. Water Resour Hydropower Eng, 2017, 48 (2): 130-137]
22. Liu DX, Xu WN, Cheng ZL, Zhou ZJ, Cai XY, Zhao BQ. Improvement test on frost resistance of vegetation-concrete and engineering application of test fruitage [J]. Environ Earth Sci, 2013, 69 (1): 161-170
23. Wu B, Xia ZY, Zhang LL, Guan SF, Li MY, Yang K, Xu WN. A Suggested fractionation of inorganic phosphorus at various types of slope soil under different restoration modes [J]. Adv Mat Res, 2013, 726-731: 3799-3802
24. 吴彬, 夏振尧, 赵娟, 杨悦舒, 李铭怡, 许文年. 植被混凝土基材微生物活性对不同水泥含量的响应[J]. 水土保持通报, 2014, 34 (3): 6-9 [Wu B, Xia ZY, Zhao Juan, Yang YS, Li MY, Xu WN. Responses of microbial activities in vegetation-concrete substrate to different cement contents [J]. Bull Soil Water Conserv, 2014, 34 (3): 6-9]
25. Vance ED, Brooks PC, Jenkinson DS. An extraction method for measuring soil microbial biomass [J]. Soil Biol Biochem, 1987, 19 (6): 703-707
26. Walkley A. A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents [J]. Soil Sci, 1947, 63 (4): 251-264
27. 贾国梅, 何立, 刘潇, 但飞君, 陈芳清. 三峡库区消落带土壤有机碳氧化稳定性特征[J]. 水土保持研究, 2016, 23 (5): 14-19 [Jia GM, He L, Liu X, Dan FJ, Chen FQ. Characteristics of soil oxidizable stable organic carbon in riparian of Three Gorges Reservoir Area [J]. Res Soil Water Conserv, 2016, 23 (5): 14-19]
28. Welbaum GE, Sturz AV, Dong ZM, Nowak J. Managing soil microorganisms to improve productivity of agro-ecosystems [J]. Crit Rev Plant Sci, 2004, 23 (2): 175-193
29. Zhao ZQ, Shahrour I, Bai Z, Fan WX, Feng LR, Li HF. Soils development in opencast coal mine spoils reclaimed for 1–13 years in the west-northern Loess Plateau of China [J]. Eur J Soil Biol, 2013, 55 (3): 40-46
30. Shukla MK, Lal R, Underwood J, Ebinger M. Physical and hydrological characteristics of reclaimed minesoils in Southeastern Ohio [J]. Soil Sci Soc Am J, 2004, 68 (4): 1352-1359
31. Peng T, Wang SJ. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China [J]. Catena, 2012, 90 (1): 53-62
32. 孙超, 许文年, 夏振尧, 熊诗源, 郭萍. 岩质边坡植被混凝土肥力时间变异性研究[J]. 中国水土保持, 2009 (4): 32-34 [Sun C, Xu WN, Xia ZY, Xiong SY, Guo P. Time variability of vegetation concrete fertility of on rocky slopes [J]. Soil Water Conserv China, 2009 (4): 32-34]
33. 肖胜生, 房焕英, 段剑, 董云社, 杨洁. 植被恢复对侵蚀型红壤碳吸存及活性有机碳的影响[J]. 环境科学研究, 2015, 28 (5): 728-735 [Xiao SS, Fang HY, Duan J, Dong YS, Yang J. Effects of vegetation restoration on soil carbon sequestration and active organic carbon in eroded red soil [J]. Res Environ Sci, 2015, 28 (5): 728-735]
34. Fan FL, Xie DT, Wei CF, Ni JP, Yang J, Tang ZY, Zhou C. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system [J]. Environ Sci Pollut Res Intern, 2015, 22 (18): 14067-14077
35. Miranda JGV, Montero E, Alves MC, Gonzálezd AP, Vázqueze EVl. Multifractal characterization of saprolite particle-size distributions after topsoil removal [J]. Geoderma, 2006, 134 (3): 373-385
36. 刘慧博, 高二鹏, 王冰洁, 杨海龙, 张嫱, 王志刚, 张成梁. 不同植物边坡的糙率系数和水力学特征参数[J]. 水土保持通报, 2015, 35 (4): 64-68 [Liu HB, Gao EP, Wang YJ, Yang HL, Zhang Q, Wang ZG, Zhang CL. Roughness coefficient and hydraulics characteristics parameters of slopes with different plants [J]. Bull Soil Water Conserv, 2015, 35 (4): 64-68]
37. 熊红福, 王世杰, 容丽, 倪健, 刘秀明. 普定喀斯特地区不同演替阶段植物群落凋落物动态[J]. 生态学杂志, 2013, 32 (4): 802-806 [Xiong HF, Wang SJ, Rong L, Ni J, Liu XM. Litter fall dynamics of plant communities at different succession stages in Karst area of Puding, Guizhou Province of Southwest China [J]. Chin J Ecol, 2013, 32 (4): 802-806]
38. Sun CL, Xue S, Chai ZZ, Zhang C, Liu GB. Effects of land-use types on the vertical distribution of fractions of oxidizable organic carbon on the Loess Plateau, China [J]. J Arid Land, 2016, 8 (2): 221-231.
39. 徐明岗, 于荣, 孙小凤, 刘骅, 王伯仁, 李菊梅. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J]. 植物营养与肥料学报, 2006, 12 (4): 459-465 [Xu MG, Yu R, Sun XF, Liu H, Wang BR, Li JM. Effects of long-term fertilization on labile organic matter and carbon management index(CMI) of the typical soils of China [J]. Plant Nutr Fertil Sci, 2006, 12 (4): 459-465]
40. 吴云当, 李芳柏, 刘同旭. 土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J]. 土壤学报, 2016, 53 (2): 277-291 [Wu YD, LI FB, Liu TX. Mechanism of extracellular electron transfer among microbe-humus-mineral in soil: a review [J]. Acta Pedol Sin, 2016, 53 (2): 277-291]
41. Aerts R, Caluwe HD. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species [J]. Ecology, 1997, 78 (1): 244-260
42. Blair G J, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Austr Agric Res, 1995, 46 (7): 393-406
43. Yao RJ, Yang JS, GAO P, Zhang JB, Jin WH. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area [J]. Soil Tillage Resh, 2013, 128: 137-148
a) Ohkamaohtsu N, Wasaki J. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms [J]. Plant Cell Physiol, 2010, 51 (8): 1255-1264
b)

相似文献/References:

[1]李秀艳,杨清海,孟飞琴,等.泥鳅在生物栅技术修复景观水体中的作用[J].应用与环境生物学报,2009,15(01):82.[doi:10.3724/SP.J.1145.2009.00082]
 LI Xiuyan,YANG Qinghai,MENG Feiqin,et al.Function of Loach on the Pollutants Removal from Polluted River Water Using a BGD Device[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):82.[doi:10.3724/SP.J.1145.2009.00082]
[2]莫家勇 钟 萍 刘正文,**.生态修复对浅水湖泊沉积物磷形态特征及湖水磷浓度的影响[J].应用与环境生物学报,2016,22(02):320.[doi:10.3724/SP.J.1145.2015.11003]
 MO Jiayong,ZHONG Ping & LIU Zhengwen,**.Effects of ecological restoration on the sediment phosphorus form and thewater phosphorus concentration in a shallow lake*[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):320.[doi:10.3724/SP.J.1145.2015.11003]
[3]高常军,高晓翠,贾朋.水文连通性研究进展[J].应用与环境生物学报,2017,23(03):586.[doi:2016.06028]
 GAO Changjun,GAO Xiaocui & JIA Peng.Summary comments on hydrologic connectivity[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):586.[doi:2016.06028]
[4]易志勇,王青,杨英,等.东湖沿岸带底栖藻垫对磷的滞留作用[J].应用与环境生物学报,2017,23(05):913.[doi:10.3724/SP.J.1145.2016.11018]
 YI Zhiyong,WANG Qing,YANG Ying,et al.The role of periphyton mats in phosphorous retention in littoral zone of Donghu Lake[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):913.[doi:10.3724/SP.J.1145.2016.11018]
[5]王稷 陈芳清** 唐彪 许建新 魏鑫.两种草本植物光合生理与生化特性对植被混凝土水泥含量的响应*[J].应用与环境生物学报,2020,26(01):1.[doi:10.19675/j.cnki.1006-687x.2019.04027]
 WANG Ji,CHEN Fangqing,**,et al.Response of Two Herbaceous Plants in the Photosynthetic Physiological and Biochemical Characteristics to Cement Content in Vegetation Concrete Matrix[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):1.[doi:10.19675/j.cnki.1006-687x.2019.04027]

更新日期/Last Update: 2019-04-25